
Unit-III

Page 1 of 14

RELATIONAL DATABASE DESIGN /
NORMALIZATION CONCEPTS

Informal Design Guidelines for Relation Schema:
We will discuss four informal measures of quality for relation schema design:

 Semantics of the attribute
 Reducing the redundant values in tuples
 Reducing the null values in tuples
 Disallowing spurious tuples

1. Semantics of the Attributes:
Whenever we group attributes to form a relation schema, we assume that a certain

meaning is associated with the attributes. This meaning or semantics specifies how to
interpret the attribute values stored in a tuple of the relation.

Guideline 1: Design a relation schema so that it is easy to explain its meaning. Do not
combine attributes from multiple entity types and relationship types into a single relation.

2. Redundant Information in Tuples & Update Anomalies:
One goal of schema design is to minimize the storage space that the base relations

(files) occupy. Grouping attributes into relation schemas has a significant effect on
storage space.
For example: the space used by the two relations EMPLOYEE and DEPARTMENT is
less than the space for an EMP_DEPT relation shown below:

EMP_DEPT
EID ENAME BDATE ADDRESS DNO DNAME MGRID

Fig: 1
In EMP_DEPT the attribute values pertaining to a particular department (DNO,

DNAME, MGRID) are repeated for every employee who works for that department.
While in EMPLOYEE and DEPARTMENT only the DNO is repeated in the
EMPLOYEE relation for each employee who works in that department.

Another serious problem with EMP_DEPT is the problem of update anomalies:
Insertion, deletion, and modification anomalies.
Insertion anomalies: These can be differentiated into two types:

1. To insert a new employee into EMP_DEPT, we must include either the value for
all the department’s attributes (DNO, DNAME, MGRID) or null (if employee
does not works for a department).
Ex.: To insert a new tuple for an employee who works in dept. no. 5,
We must enter all the information of dept. no. 5 correctly so that they are
consistent with values for department 5 in other tuples in relation.
While in EMPLOYEE and DEPARTMENT relation, we do not have to worry
about this consistency problem because we enter only the value for DNO in the

Unit-III

Page 2 of 14

EMPLOYEE relation. All other information of department are recorded only once
in the DEPARTMENT relation.

2. It is difficult to insert a new department that has no employee. The only way to do
this is to place null values in the attributes for employee, but this cause a problem
because EID is primary key and its value can’t be null.

Deletion Anomalies: If we delete an employee tuple from EMP_DEPT relation and he is
the last employee who works for that department. It means we have lost the information
about that department. This problem does not occur in the separate EMPLOYEE and
DEPARTMENT relation because department information is stored separately.
Modification Anomalies: In EMP_DEPT, if we change the value of one of the attributes
of a particular department—say, the manager of department 5 – we must update the tuple
of all employee who work in that department. Otherwise database will become
inconsistent.

Guideline 2: Design the base relation schemas so that no insertion, deletion,
modification anomalies occur in the relations. If any anomalies are present, note them
clearly so that the programs that update the database will operate correctly.

3.Null values in tuples:
Like EMP_DEPT, we may group many attributes together into a single ‘fat’

relation. If many of the attributes do not have values for some tuple in the relation, we
end up with many nulls in those tuples. This can waste storage space unnecessarily. Null
values have multiple interpretations:

 The attribute does not apply to this tuple.
 The attribute value for this tuple is unknown.
 The value is known but absent.

Guideline 3: Avoid placing attributes in a base relation whose values may be null. If
nulls are unavoidable, they apply in exceptional cases only and do not apply to a majority
of tuples in the relation.

4Spurious (False/Fake) tuples:
When we combine the tuple from two relations, we get spurious or wrong

tuples/information that is not valid. This is because of poor relation schema design.

Guideline 4: Design relational schemas so that they can be JOINED with equality
conditions on attributes that are either primary keys or foreign keys in a way that
guarantees that no spurious tuples are generated.

Unit-III

Page 3 of 14

Functional Dependency (FD):
A functional dependency is a constraint between two sets of attributes from the

database.
Formally, a functional dependency (XY) between two sets of attributes X and Y that
are subsets of relation schema R specifies a constraint on the possible tuples. The
constraint states that for any two tuples t1 and t2 such that t1 [X]=t2 [X], we must also have
t1 [Y]=t2 [Y].

This means that the values of the Y component of a tuple depends on/determined
by the values of the X component (or Y is functionally dependent on X). Alternatively,
the values of the X component of a tuple uniquely/functionally determine the values of
the Y component. The set of attributes X is called the left-hand side of the FD and Y is
called the right-hand side.
Example: consider the following relational schema: EMP_DEPT and EMP_PROJ.
In EMP_DEPT, there are two FDs:

fd1: EID{PNO, BDATE, ADDRESS, DNO}
fd2: DNO{DNAME, MGRID}

EMP_DEPT
EID ENAME BDATE ADDRESS DNO DNAME MGRID

fd1
fd2

Fig: 2 (a) Relational schema and their dependencies

In EMP_PROJ, there are three FDs
fd1: {EID, PNO}HOURS
fd2: EIDNAME
fd3: PNO{PNAME, PLOCATION}

EMP_PROJ
EID PNO HOURS NAME PNAME PLOCATION

fd1

fd2

fd3

Fig: 2 (b)- Relational schema and their dependencies

Set of FDs (F): Collection of all FDs that are specified on relational schema R.

Closure of F (F+): It is the set of all FDs that can be inferred from F.

Unit-III

Page 4 of 14

Inference rule for FDs:
1. Reflexive rule: If X Y, then X Y
2. Augmentation rule: This rule says that adding the same set of attributes to both

sides of a dependency results in another valid dependency.
{X Y} XZ YZ

3. Transitive rule: Function dependencies are transitive. i.e.
{X Y, Y Z} X Z

4. Decomposition/projective rule: This says that we can remove attributes from the
right-hand side of a dependency.

{X YZ} X Z
5. Union/additive rule: We can combine a set of dependencies into the single FD.

{X Y, X Z} X YZ
6. Pseudo-transitive rule:

{X Y, WYZ}WX Z
Minimal sets of FDs: A set of FDs (F) is minimal if it satisfies the following conditions:

1. Every dependency in F has a single attribute for its right hand side.
2. We cannot remove any dependency from F and still have a set of dependencies

that is equivalent to F.
3. We cannot replace any dependency X A in F with a dependency Y A, where

Y is a proper subset of X, and still have a set of dependencies that is equivalent to
F.

Full Functional Dependency: A FD X Y is a full functional dependency if removal
of any attribute A from X means that the dependency does not exist/hold any more.
Example: In the above fig

{EID, PNO} HOURS is a full functional dependency.
Because neither EID HOURS nor PNO HOURS holds

Partial Dependency: A FD X Y is a partial dependency if removal of any attribute A
from X means that the dependency still holds.
Example: In the above fig

{EID, PNO} NAME is partial dependency because EIDNAME holds.
Transitive Dependency: A FD X Y is a transitive dependency if there is a set of
attributes Z that is not a subset of any key, and both X Z and Z Y holds.
Example: The dependency

EIDMGRID is transitive through DNO
in EMP_DEPT relation (Fig above) because both the dependency

EID DNO and DNOMGRID hold and DNO is not subset of the key (EID).

Normalization:
Normalization is a process in which unsatisfactory relation schemas are

decomposed by breaking up their attributes into smaller relation schemas that posses
desirable properties.
Codd’s Definition: The normalization process takes a relation schema through a series of
tests to ‘certify’ whether or not it belongs to a certain normal form.
One objective of the normalization is to ensure that the update anomalies do not occur.

Unit-III

Page 5 of 14

Normal Forms: Initially, Codd proposed three normal forms, which he called first,
second, and third normal form. A strong definition of 3NF was proposed later by Boyce
and Codd and is known as Boyce-Codd Normal Form (BCNF). All these normal form
are based on functional dependencies among the attributes of a relation.

Later, a fourth normal form (4NF) and a fifth normal form (5NF) were proposed.
These are based on the concept of multi-valued dependencies and join dependencies.
Prime attribute: An attribute A in a relation R is called a prime attribute if it is a
member/part of any key (candidate key) of the relation.

Nonprime attribute: If A is not a member/part of any key (candidate key) of relation R.

Example: In WORKS_ON relation both EID and PNO are prime attributes, whereas
other attributes are nonprime.
WORKS_ON

EID PNO HOURS …

Fig: 3

First Normal Form (1NF):

It states that the domain of attributes must include only atomic (simple,
individual) values and the values of attribute in a tuple must be a single value from the
domain of that attribute. It means, it is defined to disallow multivalued attributes,
composite attributes and their combinations.

1NF is now considered to be the part of the formal definition of a relational.
Hence, 1NF disallows having a set of values, a tuple of values, or a combination of both
as an attribute value for a single tuple.
Example: Consider the DEPARTMENT relation shown below; whose PK is DNO. Here,
we assume that each department can have a number of locations.

DEPARTMENT
DNO DNAME MGRID DLOCATION

DEPARTMENT
DNO DNAME MGRID DLOCATION
1 Research 102 {A-Block}
4 Administration 104 {B-Block}
5 Head office 108 {C-Block, D-Block, A-Block}

Fig.-4(a)-A relation schema & its instance that is not in 1 NF

As we can see, this is not in 1NF because DLOCATION is not an atomic attribute. There
are two ways to normalize it into 1NF:

Unit-III

Page 6 of 14

1. To have a tuple in the original DEPARTMENT relation for each location of a
DEPARTMENT. In this case, the primary key becomes the combination of DNO
& DLOCATION. But redundancy exists in the tuples.

2. We break up its attributes into two relations DEPARTMENT and
DEPT_LOCATIONS. In DEPARTMENT relation DNO will be the PK and in
DEPT_LOCATION relation PK will be the combination of DNO &
DLOCATION.

DEPARTMENT
DNO DLOCATION DNAME MGRID

1 A-Block Research 102
4 B-Block Administration 104
5 C-Block Head Office 108
5 D-Block Head Office 108
5 A-Block Head Office 108

DEPARTMENT DEPT_LOCATIONS

Fig.-4(b)- 1 NF relation with & without redundancy

Second Normal form (2NF):

A relation schema R is in 2NF if every nonprime attribute A in R is fully
functionally dependent on the primary key of R.

General Definition of 2NF: A relational schema R is in 2NF if every nonprime attribute
A in R is not partially dependent on any key of R.

Example: The EMP_PROJ relation (fig.-7.5) is in 1NF but not in 2NF. The nonprime
attribute NAME violates 2NF because of fd2. Similarly, nonprime attributes PNAME and
PLOCATION because of fd3.

The functional dependencies fd2 and fd3 make NAME, PNAME, and
PLOCATION partially dependent on the primary key {EID, PNO}.

To make fd2 and fd3 fully functionally dependent, the functional dependencies
fd1, fd2, and fd3 lead to the decomposition of EMP_PROJ into three relation schemas
EP1, EP2, and EP3.

DNO DNAME MGRID
1 Research 102
4 Administration 104
5 Head office 108

DNO DLOCATION
1 A-Block
4 B-Block
5 C-Block
5 D-Block
5 A-Block

Unit-III

Page 7 of 14

EMP_PROJ
EID PNO HOURS NAME PNAME PLOCATION

fd1

fd2

fd3

EP1 EP2 EP3
EID PNO HOURS EID NAME PNO PNAME PLOCATION

fd1 fd2 fd3

Fig: 5- Normalizing EMP_PROJ into 2NF
Third Normal Form (3NF):

3NF is based on the concept of transitive dependency.
A relational schema R is in 3NF if it in 2NF and no nonprime attribute of R is transitively
dependent on primary key.

General Definition of 3NF: A relational schema R is in 3NF if whenever a functional
dependency X A holds in R, either (a) X is super key of R or (b) A is a prime attribute
of R.

Example: The relational schema EMP_DEPT is in 2NF, but not in 3NF because of the
transitive dependencies on MGRID (and also DNAME) on EID via DNO.

We can normalize EMP_DEPT by decomposing it into the two 3NF relation
schemas ED1 and ED2.

EMP_DEPT
EID NAME BDATE ADDRESS DNO DNAME MGRID

fd1
fd2

ED1 ED2
EID NAME BDATE ADDRESS DNO DNO DNAME MGRID

fd1 fd2
Fig: 6- Normalizing EMP_DEPT into 3 NF

Unit-III

Page 8 of 14

Boyce-Codd Normal Form (BCNF):

A relational schema R is in BCNF if whenever a functional dependency X A
holds in R, then X is a super key of R.

Note: 1) The only difference between BCNF and 3NF is that condition (b) of 3NF (which
allows A to be prime if x is not a super key) is absent from BCNF.
2) BCNF is stricter than 3NF, meaning that every relation in BCNF is also in3NF. But a
relation in 3NF is not necessarily in BCNF.
3) In practice, most relation schemas that are in 3NF are also in BCNF.
Example: Let PLOTS be a relational schema, which have two candidate keys
PROPERTY_ID# and {COUNTY_NAME, PLOT#}. Relational schema PLOTS is in
3NF {fd1 & fd2 holds due to condition (a) of definition and fd3 holds due to condition (b)
of definition} but not in BCNF {because condition (b) does not exits in the definition of
BCNF}. We can decompose PLOTS into two BCNF relations PLOTS1 and PLOTS2 as
shown below.

PLOTS
PROPERTY_ID# COUNTY_NAME PLOT# AREA

fd1

fd2

fd3

PLOTS1 PLOT2
PROPERTY_ID# AREA PLOT# AREA COUNTY_NAME

Fig. 7(a)- BCNF normalization with lost of fd2.

R
A B C

fd1

fd2

Fig. 7 (b): Relation R is in 3 NF but not in BCNF

Unit-III

Page 9 of 14

Multi-valued Dependency (MVD):
Multi-valued dependencies are a consequence of 1NF, which disallow a tuple to

have a set of values. If we have two or more multi-valued independent attribute in the
same relation schema, we get into a problem of having to repeat every value of one of the
attributes with every value of the other attribute to keep the relation instance consistent.
This constraint is specified by a multi-valued dependency.
Informally, whenever two independent 1:N relationships are mixed in the same relation,
an MVD may arise.

Formally, a multi-valued dependency (MVD) X Y specified on relation schema R,
(where X and Y are subset of R), specifies the following constraint on any relation r of R:

If two tuples t1 and t2 exists in r such that t1[X] = t2[X], then two tuples t3 and t4
should also exists in r with the following properties:

t3[X] = t4[X] = t1[X] = t2[X].
t3[Y] = t1[Y] and t4[Y] = t2[Y].
t3[R(XY)] = t2[R(XY)] and t4[R(XY)] = t1[R(XY)]

Whenever X Y holds, we say that X multi-determines Y. R (XY) is same as
R(XY) = Z. Hence, X Y implies X Z and therefore it is sometime written as X
 Y/Z.
Example: Consider the relation EMP shown below. A tuple in this relation represents the
fact that an employee whose name is ENAME works on the project whose name is
PNAME and has a dependent whose name is DEP_NAME. An employee may work on
several projects and may have several dependents. Employee’s projects and dependents
are not directly related to one other.

EMP
ENAME PNAME DEP_NAME
Rohit X Vikash
Rohit Y Shikha
Rohit X Shikha
Rohit Y Vikash

Fig 8 (a):

In the above fig.6.8 (a) two MVDs ENAME PNAME and ENAME DEP_NAME
hold in EMP relation. The employee with ENAME ‘Rohit’ works on projects with
PNAME ‘X’ and ‘Y’ and has two dependents with DEP_NAME ‘Vikash’ and ‘Shikha’.
This information will be stored in four tuples as shown in fig 6.8 (a).

Trivial MVD:
An MVD X Y is called a trivial MVD if (a) Y is a subset of X or (b) XY=R.

For example, the relation EMP_PROJECT in fig 6.8 (b) has the trivial MVD ENAME
PNAME.

Unit-III

Page 10 of 14

Non-trivial MVD:
An MVD that satisfies neither (a) nor (b) is called a non-trivial MVD

EMP_PROJECT EMP_DEPENDENT
ENAME PNAME ENAME DNAME
Rohit X Rohit Vikash
Rohit Y Rohit Shikha

Fig 8 (b):

Fourth Normal Form (4 NF):
A relation schema R is in 4NF w.r.t. a set of dependencies F if:

Either (a) X Y is a trivial MVD
Or (b) X is a super key of R
The EMP relation of fig 6.8 (a) is not in 4NF. We decompose EMP into EMP_PROJECT
and EMP_DEPENDENT as shown in fig. 6.8(b). Both EMP_PROJECT and
EMP_DEPENDENT are in 4NF because ENAME PNAME is a trivial MVD in
EMP_PROJECT and ENAME DEP_NAME is a trivial MVD in EMP_DEPENDENT.

Lossless(Nonadditive) Joins:
Lossless join ensures that no spurious tuples are generated when a NATURAL

JOIN operation is applied to the relations in the decomposition. The lossless join property
is always defined w.r.t. a specific set F of dependencies.
Formally, a decomposition D={R1, R2, …, Rm} of R has the lossless (nonadditive) join
property w.r.t. the set of dependencies F on R if for every relation state r of R that
satisfies F, the following holds:

*(<R1>(r), …, <Rm>(r))=r
The word lossless refers to loss of information, not to loss of tuples. If

decomposition does not have the lossless join property, we may get additional spurious
tuples after the PROJECT () and NATURAL JOIN (*) operations are applied. The term
nonadditive means no wrong information is added to the result after the PROJECT and
NATURAL JOIN operation are applied.

Join Dependency (JD):
A join dependency, denoted by JD(R1, R2, …, Rn) on R, specifies a constraint on

instance r of R. The constraint states that every legal instance r of R should have a
lossless join decomposition into R1, R2, …, Rn.
i.e. *(<R1>(r), <R2>(r), …, <Rn>(r)) = r
Trivial JD:

A join dependency, denoted by JD(R1, R2, …, Rn) on R, is a trival JD if one of
the relation schemas Ri in JD(R1, R2, …, Rn) is equal to R.
Trival JD has the lossless join property for any relation instance r of R and does not
specify any constraint on R

Unit-III

Page 11 of 14

Fifth Normal Form/Project-Join Normal Form (5NF/PJNF):

A relation schema R is in 5NF/PJNF w.r.t. F (set of functional, multi-valued, and
join dependency) if for every JD (R1, R2, …, Rn):

Either (a) The JD is trivial
Or (b) Every Ri is a super key of R.

Example: Consider the SUPPLY relation having constraint that ‘whenever a supplier s
supplies part p and a prject j uses part p, and the supplier s supplies at least one part to
project j, then supplier s will also be supplying part p to project j.

SUPPLY
SNAME PART_NAME PROJ_NAME
Rohit Bolt X
Rohit Nut Y
Amit Bolt Y
Vikram Nut Z
Amit Nail X
Amit Bolt X
Rohit Bolt Y

Fig. 9 (a): SUPPLY relation

If this constraint holds, the tuples below the dotted line in the above fig must exist
in any legal instance of the SUPPLY relation.

This constraint can be restated in other way and specifies a join dependency JD
(R1, R2, R3) among the three projections R1(SNAME, PART_NAME), R2(SNAME,
PROJ_NAME), and R3(PART_NAME, PROJ_NAME) of SUPPLY.
Fig 6.9 (b) shows how the SUPPLY relation with the join dependency is decomposed
into three relations R1, R2, and R3 that are each in 5NF.

R1 R2 R3
SNAME PART_NAME SNAME PROJ_NAME PART_NAME PROJ_NAME
Rohit Bolt Rohit X Bolt X
Rohit Nut Rohit Y Nut Y
Amit Bolt Amit Y Bolt Y
Vikram Nut Vikram Z Nut Z
Amit Nail Amit X Nail X

Fig 9 (b): Decomposition into 5NF

Unit-III

Page 12 of 14

Canonical Cover
In database management systems (DBMS), a canonical cover is a set of functional
dependencies that is equivalent to a given set of functional dependencies but is minimal
in terms of the number of dependencies. The process of finding the canonical cover of a
set of functional dependencies involves three main steps:

 Reduction: The first step is to reduce the original set of functional dependencies
to an equivalent set that has the same closure as the original set, but with fewer
dependencies. This is done by removing redundant dependencies and combining
dependencies that have common attributes on the left-hand side.

 Elimination: The second step is to eliminate any extraneous attributes from the
left-hand side of the dependencies. An attribute is considered extraneous if it can
be removed from the left-hand side without changing the closure of the
dependencies.

 Minimization: The final step is to minimize the number of dependencies by
removing any dependencies that are implied by other dependencies in the set.

Example
Consider a set of Functional dependencies: F={A→BC, B→C, AB→C}. Here are the
steps to find the canonical cover –
Step 1:Decompose FDs to have a single attribute on the right-hand side

 A→BC becomes A→B and A→C.
 Therefore, we have {A→B, A→C, B→C, AB→C}.

Step 2:Remove extraneous attributes from the left-hand side of FDs
 Checking AB→C First, check if A or B is extraneous.
 We can reach C without using AB→C with other functional dependencies;

therefore, we remove AB→C.
 Finally, we have {A→B, A→C, B→C}.

Step 3:Remove redundant FDs
 Check each functional dependency to see if it can be reached without using it. For

example, A→C can be reached with A→B and B→C. Therefore, A→C is
redundant and can be removed.

 Hence, Canonical Cover = {A→B, B→C}.

Extraneous attributes
An attribute of an FD is said to be extraneous if we can remove it without changing the
closure of the set of FD.

Relational Decomposition
 When a relation in the relational model is not in appropriate normal form then the

decomposition of a relation is required.
 In a database, it breaks the table into multiple tables.
 If the relation has no proper decomposition, then it may lead to problems like loss

of information.
 Decomposition is used to eliminate some of the problems of bad design like

anomalies, inconsistencies, and redundancy.

Unit-III

Page 13 of 14

Types of Decomposition

Lossless Join Decomposition
If we decompose a relation R into relations R1 and R2, ⋈ is natural join.

Decomposition is lossy if R1 ⋈ R2 ⊃ R
Decomposition is lossless if R1 ⋈ R2 = R

To check for lossless join decomposition using the FD set, the following conditions must
hold:
1. The Union of Attributes of R1 and R2 must be equal to the attribute of R. Each
attribute of R must be either in R1 or in R2.

Att(R1) U Att(R2) = Att(R)
2. The intersection of Attributes of R1 and R2 must not be NULL.

Att(R1) ∩ Att(R2) ≠ Φ
3. The common attribute must be a key for at least one relation (R1 or R2)

Att(R1) ∩ Att(R2) -> Att(R1) or Att(R1) ∩ Att(R2) -> Att(R2)

For Example, A relation R (A, B, C, D) with FD set{A->BC} is decomposed into
R1(ABC) and R2(AD) which is a lossless join decomposition as:

1. First condition holds true as Att(R1) U Att(R2) = (ABC) U (AD) = (ABCD) =
Att(R).

2. Second condition holds true as Att(R1) ∩ Att(R2) = (ABC) ∩ (AD) ≠ Φ
3. The third condition holds as Att(R1) ∩ Att(R2) = A is a key of R1(ABC) because

A->BC is given.

Dependency Preserving Decomposition
Let R is decomposed into {R1, R2,....,Rn} with projected FD set {F1,F2,......Fn}. This
decomposition is dependency preserving if F+ ={F1 U F2 U.........Fn}+.
Example
Let the relation R{A,B,C,D,E} F:{AB->C, C->D, AB->D} R is decomposed to
R1(A,B,C), R2(D,E). Prove decomposition is dependency preserving.

F1={AB->C}
F2={C->D}

=> (F1 u F2) = {AB->C, C->D}
AB+ under (F1 U F2) = {A,B,C,D} => AB->D is under (F1 U F2)
F+ = (F1 U F2)+
=> Decomposition is dependency preserving.

Unit-III

Page 14 of 14

Let the relation R{A,B,C,D,E,F,G,H,I,J} where
F: {AB->C, A->DE, B->F, F->GH. D->IJ}

R is decomposed to R1(A,B,C,D), R2(D,E), R3(B,F), R4(F,G,H) AND R5(D,I,J). Check
decomposition is dependency preserving or not.

F1={AB->C}
F2={}
F3={B->F}

F4={F->GH}
F5={D->IJ}

=> (F1 U F2 U F3 U F4 U F5) = {AB->C, B->F, F->GH, D->IJ}
A+ under (F1 U F2 U F3 U F4 U F5) = {AB->C, B->F, F->GH, D->IJ}
=>A->DE is not under (F1 U F2 UF3 U F4 U F5)
=>F+ ≠ (F1 U F2 U F3 U F4 U F5)+
=> Decomposition is not dependency preserving.

If we decompose a relation R into relations R1 and R2, All dependencies of R either must
be a part of R1 or R2 or must be derivable from a combination of functional dependency
of R1 and R2.
For Example, A relation R (A, B, C, D) with FD set{A->BC} is decomposed into
R1(ABC) and R2(AD) which is dependency preserving because FD A->BC is a part of
R1(ABC).

Advantages of Lossless Join and Dependency Preserving Decomposition
 Improved Data Integrity: Lossless join and dependency preserving

decomposition help to maintain the data integrity of the original relation by
ensuring that all dependencies are preserved.

 Reduced Data Redundancy: These techniques help to reduce data redundancy
by breaking down a relation into smaller, more manageable relations.

 Improved Query Performance: By breaking down a relation into smaller, more
focused relations, query performance can be improved.

 Easier Maintenance and Updates: The smaller, more focused relations are
easier to maintain and update than the original relation, making it easier to modify
the database schema and update the data.

 Better Flexibility: Lossless join and dependency preserving decomposition can
improve the flexibility of the database system by allowing for easier modification
of the schema.

Disadvantages of Lossless Join and Dependency Preserving Decomposition
 Increased Complexity: Lossless join and dependency-preserving decomposition

can increase the complexity of the database system, making it harder to
understand and manage.

 Costly: Decomposing relations can be costly, especially if the database is large
and complex. This can require additional resources, such as hardware and
personnel.

 Reduced Performance: Although query performance can be improved in some
cases, in others, lossless join and dependency-preserving decomposition can result
in reduced query performance due to the need for additional join operations.

 Limited Scalability: These techniques may not scale well in larger databases, as
the number of smaller, focused relations can become unwieldy.

https://www.geeksforgeeks.org/types-of-functional-dependencies-in-dbms/
https://www.geeksforgeeks.org/the-problem-of-redundancy-in-database/

	EID
	Fig: 1
	4Spurious (False/Fake) tuples:
	When we combine the tuple from two relations, we g

	EID
	fd2
	Fig: 2 (a) Relational schema and their dependencie
	EMP_PROJ
	DEPARTMENT

	DNO
	DEPARTMENT
	DNO

	1
	Research
	102
	4
	Administration
	104
	5
	Head office
	108
	DEPARTMENT

	1
	Research
	4
	Administration
	DEPARTMENTDEPT_LOCATIONS
	DNO

	1
	Research
	102
	4
	Administration
	104
	5
	Head office
	108
	1
	4
	Fig.-4(b)- 1 NF relation with & without redundancy
	EMP_PROJ
	EID
	PNO

	EID
	EID
	DNO
	Fig: 6- Normalizing EMP_DEPT into 3 NF
	PLOTS
	PROPERTY_ID#
	PROPERTY_ID#
	AREA
	EMP_PROJECTEMP_DEPENDENT

	Canonical Cover
	Example
	Step 1:Decompose FDs to have a single attribute on
	Step 2:Remove extraneous attributes from the left-
	Step 3:Remove redundant FDs
	Extraneous attributes

	Relational Decomposition
	Types of Decomposition
	Lossless Join Decomposition
	Dependency Preserving Decomposition
	Example
	Advantages of Lossless Join and Dependency Preserv
	Disadvantages of Lossless Join and Dependency Pres

