
Unit IV

Page 1 of 15

Transaction Processing Concepts
Transaction in DBMS
Transaction in Database Management Systems (DBMS) can be defined as a set of logically related
operations.

 It is the result of a request made by the user to access the contents of the database and
perform operations on it.

 It consists of various operations and has various states in its completion journey.
 It also has some specific properties that must be followed to keep the database consistent.

Operations of Transaction
A user can make different types of requests to access and modify the contents of a database. So,
we have different types of operations relating to a transaction. They are discussed as follows:
i) Read(X)

 A read operation is used to read the value of X from the database and store it in a buffer
in the main memory for further actions such as displaying that value.

 Such an operation is performed when a user wishes just to see any content of the database
and not make any changes to it. For example, when a user wants to check his/her account’s
balance, a read operation would be performed on user’s account balance from the database.

ii) Write(X)
 A write operation is used to write the value to the database from the buffer in the main

memory. For a write operation to be performed, first a read operation is performed to bring
its value in buffer, and then some changes are made to it,

 For example, when a user requests to withdraw some money from his account, his account
balance is fetched from the database using a read operation, then the amount to be deducted
from the account is subtracted from this value, and then the obtained value is stored back in
the database using a write operation.

iii) Commit
 This operation in transactions is used to maintain integrity in the database. Due to some

failure of power, hardware, or software, etc., a transaction might get interrupted before all
its operations are completed. This may cause ambiguity in the database, i.e. it might get
inconsistent before and after the transaction.

 To ensure that further operations of any other transaction are performed only after work of
the current transaction is done, a commit operation is performed to the changes made by a
transaction permanently to the database.

iv) Rollback
 This operation is performed to bring the database to the last saved state when any

transaction is interrupted in between due to any power, hardware, or software failure.
 In simple words, it can be said that a rollback operation does undo the operations of

transactions that were performed before its interruption to achieve a safe state of the
database and avoid any kind of ambiguity or inconsistency.

Transaction Schedules
When multiple transaction requests are made at the same time, we need to decide their order of
execution. Thus, a transaction schedule can be defined as a chronological order of execution of
multiple transactions. There are broadly two types of transaction schedules discussed as follows:
i) Serial Schedule

 In this kind of schedule, when multiple transactions are to be executed, they are executed
serially, i.e. at one time only one transaction is executed while others wait for the execution
of the current transaction to be completed. This ensures consistency in the database as
transactions do not execute simultaneously.

 But, it increases the waiting time of the transactions in the queue, which in turn lowers the
throughput of the system, i.e. number of transactions executed per time.

https://www.geeksforgeeks.org/dbms/
https://www.geeksforgeeks.org/what-is-database/


Unit IV

Page 2 of 15

 To improve the throughput of the system, another kind of schedule are used which has
some more strict rules which help the database to remain consistent even when transactions
execute simultaneously.

ii) Non-Serial Schedule
 To reduce the waiting time of transactions in the waiting queue and improve the system

efficiency, we use nonserial schedules which allow multiple transactions to start before a
transaction is completely executed. This may sometimes result in inconsistency and errors
in database operation.

 So, these errors are handled with specific algorithms to maintain the consistency of the
database and improve CPU throughput as well.

 Non-serial schedules are also sometimes referred to as parallel schedules, as transactions
execute in parallel in these kinds of schedules.

Serializable
 Serializability in DBMS is the property of a nonserial schedule that determines whether it

would maintain the database consistency or not.
 The nonserial schedule which ensures that the database would be consistent after the

transactions are executed in the order determined by that schedule is said to be Serializable
Schedules.

 The serial schedules always maintain database consistency as a transaction starts only
when the execution of the other transaction has been completed under it.

 Thus, serial schedules are always serializable.
 A transaction is a series of operations, so various states occur in its completion journey.

They are discussed as follows:
i) Active

 It is the first stage of any transaction when it has begun to execute. The execution of the
transaction takes place in this state.

 Operations such as insertion, deletion, or updation are performed during this state.
 During this state, the data records are under manipulation and they are not saved to the

database, rather they remain somewhere in a buffer in the main memory.
ii) Partially Committed

 This state of transaction is achieved when it has completed most of the operations and is
executing its final operation.

 It can be a signal to the commit operation, as after the final operation of the transaction
completes its execution, the data has to be saved to the database through the commit
operation.

 If some kind of error occurs during this state, the transaction goes into a failed state, else it
goes into the Committed state.

iii) Commited
This state of transaction is achieved when all the transaction-related operations have been executed
successfully along with the Commit operation, i.e. data is saved into the database after the required
manipulations in this state. This marks the successful completion of a transaction.
iv) Failed

 If any of the transaction-related operations cause an error during the active or partially
committed state, further execution of the transaction is stopped and it is brought into a
failed state. Here, the database recovery system makes sure that the database is in a
consistent state.

v) Aborted
If the error is not resolved in the failed state, then the transaction is aborted and a rollback
operation is performed to bring database to the the last saved consistent state. When the transaction
is aborted, the database recovery module either restarts the transaction or kills it.

https://www.geeksforgeeks.org/difference-between-cpu-and-gpu/


Unit IV

Page 3 of 15

The illustration below shows the various states that a transaction may encounter in its completion
journey.

Fig: Transaction in DBMS

Transaction States in DBMS
A Transaction log is a file maintained by the recovery management component to record all the
activities of the transaction. After the commit is done transaction log file is removed.

In DBMS, a transaction passes through various states such as active, partially committed, failed,
and aborted.
Active State –When the instructions of the transaction are running then the transaction is in active
state. If all the ‘read and write’ operations are performed without any error then it goes to the
“partially committed state”; if any instruction fails, it goes to the “failed state”.
2. Partially Committed – After completion of all the read and write operation the changes are
made in main memory or local buffer. If the changes are made permanent on the DataBase then
the state will change to “committed state” and in case of failure it will go to the “failed state”.
3. Failed State – When any instruction of the transaction fails, it goes to the “failed state” or if
failure occurs in making a permanent change of data on Database.
4. Aborted State – After having any type of failure the transaction goes from “failed state” to
“aborted state” and since in previous states, the changes are only made to local buffer or main
memory and hence these changes are deleted or rolled-back.
5.Committed State – It is the state when the changes are made permanent on the Data Base and
the transaction is complete and therefore terminated in the “terminated state”.
6.Terminated State – If there isn’t any roll-back or the transaction comes from the “committed
state”, then the system is consistent and ready for new transaction and the old transaction is
terminated.

https://www.geeksforgeeks.org/what-is-database/
https://www.geeksforgeeks.org/difference-between-commit-and-rollback-in-sql/


Unit IV

Page 4 of 15

ACID Properties of Transaction:
ACID stands for Atomicity, Consistency, Isolation and Durability

1. Atomicity: All the operations in a transaction are considered to be atomic and as one unit.
If system fails or any read/write conflicts occur during transaction the system needs to
revert back to its previous state. Atomicity is maintained by the Transaction Management
Component.

2. Consistency: Every transaction should lead to database connection from one valid state to
other valid state. If system fails because of invalid data while doing an operation revert
back the system to its previous state. Consistency is maintained by the Application
manager.

3. Isolation: If multiple transactions are executing on single database, each transaction should
be isolated from other transaction. If multiple transactions are performed on single
database, operation from any transaction should not interfere with operation in other
transaction. Isolation is maintained by the concurrency control manager.

4. Durability: Durability means the changes made during the transactions should exist after
completion of transaction. Changes must be permanent and must not be lost due to any
database failure. It is maintained by the recovery manager.

Example:
A has an account with an amount of Rs 150. B has an account with an amount of Rs 50. A is
transferring amount Rs 100 to B’s account.

1. Atomicity: Operations required for transfer are: Deduct amount Rs100 from A’s account.
Add amount Rs 100 to B’s account. All operations should be done. If system fails to add
amount in B’s account after deducting from A’s account, revert the operation on A’s
account.

2. Consistency: The sum amount in A’s account and B’s account should be same before and
after the transaction completes. In the example the sum of both account before and after
transaction is Rs 200, which preserves the consistency.

3. Isolation: If there is any other transaction (let between A and C) is going on, it should not
affect the transaction between A and B i.e., both the transactions should be isolated.

4. Durability: It may happen system gets crashed after the completion of all operations then,
after restarting it should preserve all the changes. The amount in A’s and B’s account
should be same before and after the system restart.

Schedule
A series of operation from one transaction to another transaction is known as schedule. It is used to
preserve the order of the operation in each of the individual transaction.

1. Serial Schedule
The serial schedule is a type of schedule where one transaction is executed completely before
starting another transaction. In the serial schedule, when the first transaction completes its cycle,
then the next transaction is executed.

https://www.geeksforgeeks.org/acid-properties-in-dbms/


Unit IV

Page 5 of 15

For example: Suppose there are two transactions T1 and T2 which have some operations. If it has
no interleaving of operations, then there are the following two possible outcomes:

1. Execute all the operations of T1 which was followed by all the operations of T2.
2. Execute all the operations of T1 which was followed by all the operations of T2.
 In the given (a) figure, Schedule A shows the serial schedule where T1 followed by T2.
 In the given (b) figure, Schedule B shows the serial schedule where T2 followed by T1.

2. Non-serial Schedule
 If interleaving of operations is allowed, then there will be non-serial schedule.
 It contains many possible orders in which the system can execute the individual operations

of the transactions.
 In the given figure (c) and (d), Schedule C and Schedule D are the non-serial schedules. It

has interleaving of operations.
3. Serializable schedule

 The serializability of schedules is used to find non-serial schedules that allow the
transaction to execute concurrently without interfering with one another.

 It identifies which schedules are correct when executions of the transaction have
interleaving of their operations.

 A non-serial schedule will be serializable if its result is equal to the result of its transactions
executed serially.



Unit IV

Page 6 of 15

Here,
Schedule A and Schedule B are serial schedule.
Schedule C and Schedule D are Non-serial schedule.

Serializability in DBMS
If a non-serial schedule can be transformed into its corresponding serial schedule, it is said to be
serializable. Simply said, a non-serial schedule is referred to as a serializable schedule if it yields
the same results as a serial timetable.
Types of Serializability
There are two ways to check whether any non-serial schedule is serializable.

1. Conflict serializability
Conflict serializability refers to a subset of serializability that focuses on maintaining the
consistency of a database while ensuring that identical data items are executed in an order. In a

https://www.geeksforgeeks.org/conflict-serializability-in-dbms/


Unit IV

Page 7 of 15

DBMS each transaction has a value and all the transactions, in the database rely on this uniqueness.
This uniqueness ensures that no two operations with the conflict value can occur simultaneously.
For example lets consider an order table and a customer table as two instances. Each order is
associated with one customer even though a single client may place orders. However there are
restrictions for achieving conflict serializability in the database. Here are a few of them.

1. Different transactions should be used for the two procedures.
2. The identical data item should be present in both transactions.
3. Between the two operations, there should be at least one write operation.

Example
Three transactions—t1, t2, and t3—are active on a schedule “S” at once. Let’s create a graph of
precedence.

Transaction – 1 (t1) Transaction – 2 (t2) Transaction – 3 (t3)
R(a)

R(b)
R(b)

W(b)
W(a)

W(a)
R(a)
W(a)

It is a conflict serializable schedule as well as a serial schedule because the graph (a DAG) has no
loops. We can also determine the order of transactions because it is a serial schedule.

Fig: DAG of transactions
As there is no incoming edge on Transaction 1, Transaction 1 will be executed first. T3 will run
second because it only depends on T1. Due to its dependence on both T1 and T3, t2 will finally be
executed.
Therefore, the serial schedule’s equivalent order is: t1 –> t3 –> t2
Note: A schedule is unquestionably consistent if it is conflicting serializable. A non-conflicting
serializable schedule, on the other hand, might or might not be serial. We employ the idea of View
Serializability to further examine its serial behavior.
2. View Serializability
View serializability is a kind of operation in a serializable in which each transaction should
provide some results, and these outcomes are the output of properly sequentially executing the
data item. The view serializability, in contrast to conflict serialized, is concerned with avoiding
database inconsistency. The view serializability feature of DBMS enables users to see databases in
contradictory ways.
To further understand view serializability in DBMS, we need to understand the schedules S1 and
S2. The two transactions T1 and T2 should be used to establish these two schedules. Each
schedule must follow the three transactions in order to retain the equivalent of the transaction.
These three circumstances are listed below.

https://www.geeksforgeeks.org/view-serializability-in-dbms/


Unit IV

Page 8 of 15

1. The first prerequisite is that the same kind of transaction appears on every schedule. This
requirement means that the same kind of group of transactions cannot appear on both
schedules S1 and S2. The schedules are not equal to one another if one schedule commits a
transaction but it does not match the transaction of the other schedule.

2. The second requirement is that different read or write operations should not be used in
either schedule. On the other hand, we say that two schedules are not similar if schedule S1
has two write operations whereas schedule S2 only has one. The number of the write
operation must be the same in both schedules, however there is no issue if the number of
the read operation is different.

3. The second to last requirement is that there should not be a conflict between either
timetable. execution order for a single data item. Assume, for instance, that schedule S1’s
transaction is T1, and schedule S2’s transaction is T2. The data item A is written by both
the transaction T1 and the transaction T2. The schedules are not equal in this instance.
However, we referred to the schedule as equivalent to one another if it had the same
number of all write operations in the data item.

Serializability testing
We can utilize the Serialization Graph or Precedence Graph to examine a schedule’s serializability.
A schedule’s full transactions are organized into a Directed Graph, what a serialization graph is.

Fig: Precedence Graph
It can be described as a Graph G(V, E) with vertices V = “V1, V2, V3,…, Vn” and directed edges
E = “E1, E2, E3,…, En”. One of the two operations—READ or WRITE—performed by a certain
transaction is contained in the collection of edges. Where Ti -> Tj, means Transaction-Ti is either
performing read or write before the transaction-Tj.

Recoverability in DBMS
Recoverability is a property of database systems that ensures that, in the event of a failure or error,
the system can recover the database to a consistent state. Recoverability guarantees that all
committed transactions are durable and that their effects are permanently stored in the database,
while the effects of uncommitted transactions are undone to maintain data consistency.
The recoverability property is enforced through the use of transaction logs, which record all
changes made to the database during transaction processing. When a failure occurs, the system
uses the log to recover the database to a consistent state, which involves either undoing the effects
of uncommitted transactions or redoing the effects of committed transactions.

Recovery Techniques in DBMS
Database Systems like any other computer system, are subject to failures but the data stored in
them must be available as and when required. When a database fails it must possess the facilities
for fast recovery. It must also have atomicity i.e. either transactions are completed successfully
and committed (the effect is recorded permanently in the database) or the transaction should have
no effect on the database.

Types of Recovery Techniques in DBMS
Database recovery techniques are used in database management systems (DBMS) to restore a
database to a consistent state after a failure or error has occurred. The main goal of recovery
techniques is to ensure data integrity and consistency and prevent data loss.
Followings are types of recovery techniques used in DBMS



Unit IV

Page 9 of 15

 Rollback/Undo Recovery Technique
 Commit/Redo Recovery Technique
 CheckPoint Recovery Technique

Database recovery techniques ensure data integrity in case of system failures.
Rollback/Undo Recovery Technique
The rollback/undo recovery technique is based on the principle of backing out or undoing the
effects of a transaction that has not been completed successfully due to a system failure or error.
This technique is accomplished by undoing the changes made by the transaction using the log
records stored in the transaction log. The transaction log contains a record of all the transactions
that have been performed on the database. The system uses the log records to undo the changes
made by the failed transaction and restore the database to its previous state.
Commit/Redo Recovery Technique
The commit/redo recovery technique is based on the principle of reapplying the changes made by
a transaction that has been completed successfully to the database. This technique is accomplished
by using the log records stored in the transaction log to redo the changes made by the transaction
that was in progress at the time of the failure or error. The system uses the log records to reapply
the changes made by the transaction and restore the database to its most recent consistent state.
Checkpoint Recovery Technique
Checkpoint Recovery is a technique used to improve data integrity and system stability, especially
in databases and distributed systems. It entails preserving the system’s state at regular intervals,
known as checkpoints, at which all ongoing transactions are either completed or not initiated. This
saved state, which includes memory and CPU registers, is kept in stable, non-volatile storage so
that it can withstand system crashes. In the event of a breakdown, the system can be restored to the
most recent checkpoint, which reduces data loss and downtime. The frequency of checkpoint
formation is carefully regulated to decrease system overhead while ensuring that recent data may
be restored quickly.
Overall, recovery techniques are essential to ensure data consistency and availability in Database
Management System, and each technique has its own advantages and limitations that must be
considered in the design of a recovery system.
Log based Recovery in DBMS
The atomicity property of DBMS states that either all the operations of transactions must be
performed or none. The modifications done by an aborted transaction should not be visible to the
database and the modifications done by the committed transaction should be visible. To achieve
our goal of atomicity, the user must first output stable storage information describing the
modifications, without modifying the database itself. This information can help us ensure that all
modifications performed by committed transactions are reflected in the database. This information
can also help us ensure that no modifications made by an aborted transaction persist in the
database.

Fig: Log based Recovery in DBMS

https://www.geeksforgeeks.org/checkpoints-in-dbms/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/


Unit IV

Page 10 of 15

Log and log records
The log is a sequence of log records, recording all the updated activities in the database. In stable
storage, logs for each transaction are maintained. Any operation which is performed on the
database is recorded on the log. Prior to performing any modification to the database, an updated
log record is created to reflect that modification. An update log record represented as: <Ti, Xj, V1,
V2> has these fields:

1. Transaction identifier: Unique Identifier of the transaction that performed the write
operation.

2. Data item: Unique identifier of the data item written.
3. Old value: Value of data item prior to write.
4. New value: Value of data item after write operation.

Other types of log records are:
1. <Ti start> : It contains information about when a transaction Ti starts.
2. <Ti commit> : It contains information about when a transaction Ti commits.
3. <Ti abort> : It contains information about when a transaction Ti aborts.

Undo and Redo Operations
Because all database modifications must be preceded by the creation of a log record, the system
has available both the old value prior to the modification of the data item and new value that is to
be written for data item. This allows system to perform redo and undo operations as appropriate:

1. Undo: using a log record sets the data item specified in log record to old value.
2. Redo: using a log record sets the data item specified in log record to new value.

The database can be modified using two approaches –
1. Deferred Modification Technique: If the transaction does not modify the database until it

has partially committed, it is said to use deferred modification technique.
2. Immediate Modification Technique: If database modification occur while the transaction

is still active, it is said to use immediate modification technique.
Recovery using Log records
After a system crash has occurred, the system consults the log to determine which transactions
need to be redone and which need to be undone.

1. Transaction Ti needs to be undone if the log contains the record <Ti start> but does not
contain either the record <Ti commit> or the record <Ti abort>.

2. Transaction Ti needs to be redone if log contains record <Ti start> and either the record
<Ti commit> or the record <Ti abort>.

Use of Checkpoints – When a system crash occurs, user must consult the log. In principle, that
need to search the entire log to determine this information. There are two major difficulties with
this approach:

1. The search process is time-consuming.
2. Most of the transactions that, according to our algorithm, need to be redone have already

written their updates into the database. Although redoing them will cause no harm, it will
cause recovery to take longer.

To reduce these types of overhead, user introduce checkpoints. A log record of the form
<checkpoint L> is used to represent a checkpoint in log where L is a list of transactions active at
the time of the checkpoint. When a checkpoint log record is added to log all the transactions that
have committed before this checkpoint have <Ti commit> log record before the checkpoint record.
Any database modifications made by Ti is written to the database either prior to the checkpoint or
as part of the checkpoint itself. Thus, at recovery time, there is no need to perform a redo operation
on Ti. After a system crash has occurred, the system examines the log to find the last <checkpoint
L> record. The redo or undo operations need to be applied only to transactions in L, and to all
transactions that started execution after the record was written to the log. Let us denote this set of
transactions as T. Same rules of undo and redo are applicable on T as mentioned in Recovery



Unit IV

Page 11 of 15

using Log records part. Note that user need to only examine the part of the log starting with the
last checkpoint log record to find the set of transactions T, and to find out whether a commit or
abort record occurs in the log for each transaction in T. For example, consider the set of
transactions {T0, T1, . . ., T100}. Suppose that the most recent checkpoint took place during the
execution of transaction T67 and T69, while T68 and all transactions with subscripts lower than 67
completed before the checkpoint. Thus, only transactions T67, T69, . . ., T100 need to be
considered during the recovery scheme. Each of them needs to be redone if it has completed (that
is, either committed or aborted); otherwise, it was incomplete, and needs to be undone.
Log-based recovery is a technique used in database management systems (DBMS) to recover a
database to a consistent state in the event of a failure or crash. It involves the use of transaction
logs, which are records of all the transactions performed on the database.
In log-based recovery, the DBMS uses the transaction log to reconstruct the database to a
consistent state. The transaction log contains records of all the changes made to the database,
including updates, inserts, and deletes. It also records information about each transaction, such as
its start and end times.
When a failure occurs, the DBMS uses the transaction log to determine which transactions were
incomplete at the time of the failure. It then performs a series of operations to undo the incomplete
transactions and redo the completed ones. This process is called the redo/undo recovery algorithm.
The redo operation involves reapplying the changes made by completed transactions that were not
yet saved to the database at the time of the failure. This ensures that all changes are applied to the
database.
The undo operation involves undoing the changes made by incomplete transactions that were
saved to the database at the time of the failure. This restores the database to a consistent state by
reversing the effects of the incomplete transactions.
Once the redo and undo operations are completed, the DBMS can bring the database back online
and resume normal operations.
Log-based recovery is an essential feature of modern DBMSs and provides a reliable mechanism
for recovering from failures and ensuring the consistency of the database.
Advantages of Log based Recovery

 Durability: In the event of a breakdown, the log file offers a dependable and long-lasting
method of recovering data. It guarantees that in the event of a system crash, no committed
transaction is lost.

 Faster Recovery: Since log-based recovery recovers databases by replaying committed
transactions from the log file, it is typically faster than alternative recovery methods.

 Incremental Backup: Backups can be made in increments using log-based recovery. Just
the changes made since the last backup are kept in the log file, rather than creating a
complete backup of the database each time.

 Lowers the Risk of Data Corruption: By making sure that all transactions are correctly
committed or canceled before they are written to the database , log-based recovery lowers
the risk of data corruption.

Disadvantages of Log based Recovery
 Additional overhead: Maintaining the log file incurs an additional overhead on the

database system, which can reduce the performance of the system.
 Complexity: Log-based recovery is a complex process that requires careful management

and administration. If not managed properly, it can lead to data inconsistencies or loss.
 Storage space: The log file can consume a significant amount of storage space, especially

in a database with a large number of transactions.
 Time-Consuming: The process of replaying the transactions from the log file can be time-

consuming, especially if there are a large number of transactions to recover.

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/
https://www.geeksforgeeks.org/what-is-database/


Unit IV

Page 12 of 15

Deadlock in DBMS
In database management systems (DBMS) a deadlock occurs when two or more transactions are
unable to the proceed because each transaction is waiting for the other to the release locks on
resources. This situation creates a cycle of the dependencies where no transaction can continue
leading to the standstill in the system. The Deadlocks can severely impact the performance and
reliability of a DBMS making it crucial to the understand and manage them effectively.
What is Deadlock?
The Deadlock is a condition in a multi-user database environment where transactions are unable to
the complete because they are each waiting for the resources held by other transactions. This
results in a cycle of the dependencies where no transaction can proceed.
Basically, Deadlocks occur when two or more transactions wait indefinitely for resources
held by each other. Also, mastering how to detect and resolve deadlocks is vital for database
efficiency.
Characteristics of Deadlock

 Mutual Exclusion: Only one transaction can hold a particular resource at a time.
 Hold and Wait: The Transactions holding resources may request additional resources held

by others.
 No Preemption: The Resources cannot be forcibly taken from the transaction holding them.
 Circular Wait: A cycle of transactions exists where each transaction is waiting for the

resource held by the next transaction in the cycle.
In a database management system (DBMS), a deadlock occurs when two or more transactions are
waiting for each other to release resources, such as locks on database objects, that they need to
complete their operations. As a result, none of the transactions can proceed, leading to a situation
where they are stuck or “deadlocked.”
Deadlocks can happen in multi-user environments when two or more transactions are running
concurrently and try to access the same data in a different order. When this happens, one
transaction may hold a lock on a resource that another transaction needs, while the second
transaction may hold a lock on a resource that the first transaction needs. Both transactions are
then blocked, waiting for the other to release the resource they need.
DBMSs often use various techniques to detect and resolve deadlocks automatically. These
techniques include timeout mechanisms, where a transaction is forced to release its locks after a
certain period of time, and deadlock detection algorithms, which periodically scan the transaction
log for deadlock cycles and then choose a transaction to abort to resolve the deadlock.
It is also possible to prevent deadlocks by careful design of transactions, such as always acquiring
locks in the same order or releasing locks as soon as possible. Proper design of the database
schema and application can also help to minimize the likelihood of deadlocks.
In a database, a deadlock is an unwanted situation in which two or more transactions are waiting
indefinitely for one another to give up locks. Deadlock is said to be one of the most feared
complications in DBMS as it brings the whole system to a Halt.
Example – let us understand the concept of deadlock suppose, Transaction T1 holds a lock on
some rows in the Students table and needs to update some rows in the Grades table.
Simultaneously, Transaction T2 holds locks on those very rows (Which T1 needs to update) in the
Grades table but needs to update the rows in the Student table held by Transaction T1.
Now, the main problem arises. Transaction T1 will wait for transaction T2 to give up the lock, and
similarly, transaction T2 will wait for transaction T1 to give up the lock. As a consequence, All
activity comes to a halt and remains at a standstill forever unless the DBMS detects the deadlock
and aborts one of the transactions.

https://www.geeksforgeeks.org/introduction-of-dbms-database-management-system-set-1/


Unit IV

Page 13 of 15

Fig: Deadlock in DBMS
What is Deadlock Avoidance?
When a database is stuck in a deadlock, It is always better to avoid the deadlock rather than
restarting or aborting the database. The deadlock avoidance method is suitable for smaller
databases whereas the deadlock prevention method is suitable for larger databases.
One method of avoiding deadlock is using application-consistent logic. In the above-given
example, Transactions that access Students and Grades should always access the tables in the
same order. In this way, in the scenario described above, Transaction T1 simply waits for
transaction T2 to release the lock on Grades before it begins. When transaction T2 releases the
lock, Transaction T1 can proceed freely.
Another method for avoiding deadlock is to apply both the row-level locking mechanism and the
READ COMMITTED isolation level. However, It does not guarantee to remove deadlocks
completely.
What is Deadlock Detection?
When a transaction waits indefinitely to obtain a lock, The database management system should
detect whether the transaction is involved in a deadlock or not.
Wait-for-graph is one of the methods for detecting the deadlock situation. This method is suitable
for smaller databases. In this method, a graph is drawn based on the transaction and its lock on the
resource. If the graph created has a closed loop or a cycle, then there is a deadlock. For the above-
mentioned scenario, the Wait-For graph is drawn below:

What is Deadlock Prevention?
For a large database, the deadlock prevention method is suitable. A deadlock can be prevented if
the resources are allocated in such a way that a deadlock never occurs. The DBMS analyzes the
operations whether they can create a deadlock situation or not, If they do, that transaction is never
allowed to be executed.
Deadlock prevention mechanism proposes two schemes:
 Wait-Die Scheme: In this scheme, If a transaction requests a resource that is locked by

another transaction, then the DBMS simply checks the timestamp of both transactions and
allows the older transaction to wait until the resource is available for execution.
Suppose, there are two transactions T1 and T2, and Let the timestamp of any transaction T be
TS (T). Now, If there is a lock on T2 by some other transaction and T1 is requesting resources
held by T2, then DBMS performs the following actions:



Unit IV

Page 14 of 15

Checks if TS (T1) < TS (T2) – if T1 is the older transaction and T2 has held some resource, then it
allows T1 to wait until resource is available for execution. That means if a younger transaction has
locked some resource and an older transaction is waiting for it, then an older transaction is allowed
to wait for it till it is available. If T1 is an older transaction and has held some resource with it and
if T2 is waiting for it, then T2 is killed and restarted later with random delay but with the same
timestamp. i.e. if the older transaction has held some resource and the younger transaction waits
for the resource, then the younger transaction is killed and restarted with a very minute delay with
the same timestamp.
This scheme allows the older transaction to wait but kills the younger one.
 Wound Wait Scheme: In this scheme, if an older transaction requests for a resource held by a

younger transaction, then an older transaction forces a younger transaction to kill the
transaction and release the resource. The younger transaction is restarted with a minute delay
but with the same timestamp. If the younger transaction is requesting a resource that is held by
an older one, then the younger transaction is asked to wait till the older one releases it.

The following table lists the differences between Wait – Die and Wound -Wait scheme prevention
schemes:
Wait – Die Wound -Wait
It is based on a non-preemptive technique. It is based on a preemptive technique.
In this, older transactions must wait for the younger
one to release its data items.

In this, older transactions never wait for
younger transactions.

The number of aborts and rollbacks is higher in these
techniques.

In this, the number of aborts and rollback is
lesser.

Applications
1. Delayed Transactions: Deadlocks can cause transactions to be delayed, as the resources

they need are being held by other transactions. This can lead to slower response times and
longer wait times for users.

2. Lost Transactions: In some cases, deadlocks can cause transactions to be lost or aborted,
which can result in data inconsistencies or other issues.

3. Reduced Concurrency: Deadlocks can reduce the level of concurrency in the system, as
transactions are blocked waiting for resources to become available. This can lead to slower
transaction processing and reduced overall throughput.

4. Increased Resource Usage: Deadlocks can result in increased resource usage, as
transactions that are blocked waiting for resources to become available continue to
consume system resources. This can lead to performance degradation and increased
resource contention.

5. Reduced User Satisfaction: Deadlocks can lead to a perception of poor system
performance and can reduce user satisfaction with the application. This can have a negative
impact on user adoption and retention.

Features of Deadlock in a DBMS
1. Mutual Exclusion: Each resource can be held by only one transaction at a time, and other

transactions must wait for it to be released.
2. Hold and Wait: Transactions can request resources while holding on to resources already

allocated to them.
3. No Preemption: Resources cannot be taken away from a transaction forcibly, and the

transaction must release them voluntarily.
4. Circular Wait: Transactions are waiting for resources in a circular chain, where each

transaction is waiting for a resource held by the next transaction in the chain.
5. Indefinite Blocking: Transactions are blocked indefinitely, waiting for resources to

become available, and no transaction can proceed.



Unit IV

Page 15 of 15

6. System Stagnation: Deadlock leads to system stagnation, where no transaction can
proceed, and the system is unable to make any progress.

7. Inconsistent Data: Deadlock can lead to inconsistent data if transactions are unable to
complete and leave the database in an intermediate state.

8. Difficult to Detect and Resolve: Deadlock can be difficult to detect and resolve, as it may
involve multiple transactions, resources, and dependencies.

Disadvantages
1. System downtime: Deadlock can cause system downtime, which can result in loss of

productivity and revenue for businesses that rely on the DBMS.
2. Resource waste: When transactions are waiting for resources, these resources are not

being used, leading to wasted resources and decreased system efficiency.
3. Reduced concurrency: Deadlock can lead to a decrease in system concurrency, which can

result in slower transaction processing and reduced throughput.
4. Complex resolution: Resolving deadlock can be a complex and time-consuming process,

requiring system administrators to intervene and manually resolve the deadlock.
5. Increased system overhead: The mechanisms used to detect and resolve deadlock, such

as timeouts and rollbacks, can increase system overhead, leading to decreased performance.


	Transaction Processing Concepts
	Transaction in DBMS
	Operations of Transaction
	i) Read(X)
	ii) Write(X)
	iii) Commit
	iv) Rollback

	Transaction Schedules
	i) Serial Schedule
	ii) Non-Serial Schedule
	Serializable
	i) Active
	ii) Partially Committed
	iii) Commited
	iv) Failed
	v) Aborted

	Transaction States in DBMS
	ACID Properties of Transaction:
	Example:


	Schedule
	1. Serial Schedule
	2. Non-serial Schedule
	3. Serializable schedule

	Serializability in DBMS
	Types of Serializability
	1. Conflict serializability
	Example

	2. View Serializability

	Serializability testing

	Recoverability in DBMS
	Recovery Techniques in DBMS
	Types of Recovery Techniques in DBMS
	Rollback/Undo Recovery Technique
	Commit/Redo Recovery Technique 
	Checkpoint Recovery Technique 


	Log based Recovery in DBMS
	Log and log records 
	Undo and Redo Operations
	Recovery using Log records
	Advantages of Log based Recovery 
	Disadvantages of Log based Recovery 

	Deadlock in DBMS
	What is Deadlock?
	Characteristics of Deadlock

	What is Deadlock Avoidance?
	What is Deadlock Detection?
	What is Deadlock Prevention? 
	Applications
	Features of Deadlock in a DBMS
	Disadvantages


