

TEERTHANKER MAHAVEER UNIVERSITY

(Established under Govt. of U. P. Act No. 30, 2008) Delhi Road, Moradabad (U.P.)

PhD PROGRAMME

SYLLABUS FOR DISCIPLINE-SPECIFIC COURSE COMPUTER APPLICATIONS/ COMPUTER SCIENCE & ENGINEERING

Course Code: PDS240136	CYBER SECURITY AND PRIVACY	L 0	Т 0	P 0	C 4
Objective:	To gain knowledge of cryptographic principles, algorithms for securing data and ensuring confidentiality. To exp	s, an	d pr	otoc	ols
	authentication techniques, network security mechanism principles, data protection techniques, and threat detecti infrastructure security.	s a	nd	priva	acy
Course Outcomes:					
CO 1:	understanding of cryptographic principles and technic symmetric and asymmetric encryption, hashing algo signatures, and advanced protocols, to ensure data confident and authenticity in cybersecurity contexts.	rith	ns,	dig	ital
CO 2:	Design and implement robust identity verification system diverse authentication methods, including multi-factor techniques, while addressing challenges associated with identity and zero-trust authentication frameworks.	and	bi	ome	tric
CO 3:	Evaluate network security mechanisms, including firewalls, I and secure architectures, to mitigate threats such as spoof man-in-the-middle attacks, while ensuring the security of networks.	ng, IoT	DDo and	oS, a l clo	and oud
CO 4:	Evaluate privacy principles and data protection technic differential privacy, k-anonymity, and IAM systems, to a challenges, and compliance with regulatory frameworks	addr	ess	priva	acy
CO 5:	Explore advanced cybersecurity applications in critical including emerging research trends like post-quantum cry driven threat detection, and cyber-physical systems secu- real-world case studies to develop effective mitigation strates	vptog rity,	grapl lev	ıy, I	AI-
Course Content:					
Unit 1:	Overview of cryptography and its role in cybersecurity. Symmetric encryption: algorithms, applications, and limitations. Asymmetric encryption: principles, RSA, ECC, and key management. Hashing techniques: MD5, SHA family, and their applications. Digital signatures and certificates: ensuring authenticity and integrity. Advanced cryptographic techniques: quantum cryptography and homomorphic encryption. Cryptographic protocols: SSL/TLS, and IPsec.				
Unit 2:	Overview of authentication and its role in security. Authentication methods: knowledge-based (passwords, PINs), possession-based (tokens, OTPs), and inherence-based (biometrics). Multi-factor authentication (MFA) and adaptive authentication techniques. Password management and best practices. Biometric authentication: fingerprint, facial recognition, and behavioral biometrics. Challenges and emerging trends: decentralized identity, zero-trust authentication, and password less systems.				

Unit 3:	 Firewalls, intrusion detection/prevention systems (IDS/IPS), and VPNs. Network attacks: spoofing, man-in-the-middle, and DDoS. Wireless network security and IoT device protection. Secure network architectures, Cloud network security challenges and solutions 	
Unit 4:	Privacy principles: anonymity, pseudonymity, and differential privacy. Techniques for privacy-preserving computation: k- anonymity and secure multi-party computation. Data protection frameworks: GDPR, HIPAA, and data masking techniques. Identity and access management (IAM) systems and zero-trust architecture. Privacy challenges in AI and big data environments.	
Unit 5:	Security in critical infrastructure, including power grids, healthcare, and financial systems. AI for threat detection, adversarial machine learning, and autonomous security systems. Big data analytics for threat intelligence and anomaly detection. Post-quantum cryptography, cyber-physical systems security, and ethical concerns in cybersecurity research. Real-world case studies on cybersecurity breaches and mitigation strategies.	
Text Books:	 Bruce Schneier, "Applied Cryptography". John Wiley & Sons William Stallings, Cryptography and Network Security: Principles and Practice, Pearson Education. 	
Reference Books:	 Behrouz A. Forouzan, Cryptography and Network Security, McGraw- Hill Education. Charles P. Pfleeger and Shari Lawrence Pfleeger, Security in Computing, Prentice Hall. Michael T. Goodrich and Roberto Tamassia, Introduction to Computer Security, Pearson Education. 	