
DBMS/Unit-1

Page 1 of 22

Basic Concepts
Introduction:-
Any organization, be it a Bank, Manufacturing Company, Hospital, University, Conglomerate or a
Government Department, all require huge amount of data in one form or another. All such
organizations need to collect data, process them and store them for future use. These organizations
require data for a number of purposes, say:

 Preparing sales report
 Forecasts
 Accounts payable & receivable
 Medical histories, etc.
Thus we can say that data are very vital corporate resources. The amount of data used these days

in organizations can be measured in the range of some billions of bytes. The financial investment
involved is also considerable.

Traditional databases are organized by fields, records, and files. A field is a single piece of
information; a record is one complete set of fields; and a file is a collection of records. For example,
a telephone book is analogous to a file. It contains a list of records, each of which consists of three
fields: name, address, and telephone number.
Data:

Data are the raw facts that can be recorded and that have some implicit meaning For
example consider the names, telephone numbers and address of people you know. All these names
are somewhere linked to persons whom you want to remember or want to keep contact with them
hence there is some meaning full reason to why you have collected this data.
Traditional databases are organized by fields, records, and files. A field is a single piece of
information; a record is one complete set of fields; and a file is a collection of records. For example,
a telephone book is analogous to a file. It contains a list of records, each of which consists of three
fields: name, address, and telephone number.
Database:

A database is a organized collection of related data with some implicit meaning. The data
collected in a database is stored in a standard format designed to be share by one or multiple users.
For example consider the data mentioned above address, names etc. of known persons you may
have recorded them in the from of address book, or using a personal computer with software such
as WORD or EXCEL etc. This is a collection of related data with an implicit meaning and hence a
database. But, any abrupt collection of data cannot be called a database. A database has to have
some implicit properties.

 A database should be able to represent some aspect of real world (also called mini
world). Changes to mini world are reflected in the database.

 A database is a logically interrelated collection of data with some inherent meaning. A
random collection of data thus cannot be referred to as a database.

 A database is designed, built, and populated with data for a specific purpose. It has an
intended group of users and some preconceived applications in which these users are
interested.

A database can be of any size and of varying complexity. Hence it may be generated and
maintained manually or by machine. Hence we can say that any database can be created and
maintained in two various ways:
 Manual
 Computerized
 File Oriented System
 Data Base Management System

DBMS/Unit-1

Page 2 of 22

DBMS
A database management system (DBMS) is a collection of programs that enables users to create
and maintain a database.
The DBMS is hence a general-purpose software system that facilitates the processes of defining,
constructing, and manipulating databases for various applications.

 Defining a database involves specifying the data types, structures, and constraints for the
data to be stored in the database.

 Constructing the database is the process of storing the data itself on some storage medium
that is controlled by the DBMS.

 Manipulating a database includes such functions as querying the database to retrieve
specific data, updating the database to reflect changes in the miniworld, and generating
reports from the data.

It is not necessary to use general-purpose DBMS software to implement a computerized database.
We could write our own set of programs to create and maintain the database, in effect creating our
own special-purpose DBMS software. In either case—whether we use a general-purpose DBMS or
not—we usually have to employ a considerable amount of software to manipulate the database.
Database system
We will call the database and DBMS software together a database system.

Users/Programmers

Fig.: A Database System Environment

Database example:
Let us consider an example that most reader familiar with: ‘Any UNIVERSITY

Database’ for maintaining information containing students, courses, and grades in a university
environment. In the fig. below, the database is organized as five files, each of which stores data
records of the same type.

Application Programs/Queries

DBMS
S/W S/W to process queries/Programs

S/W to access stored Data

Meta-Data Stored
Database

DBMS/Unit-1

Page 3 of 22

Student file stores data on each student. Course file stores data on each course.
Section file stores data on each section of a course.
Grade-Report file stores the grades that student receive in the various sections they have
completed.
Prerequisite file stores the prerequisite of each course.

STUDENT Name Roll No Class Major
Amit Kr 17 B.Cam Comp. Sc
Reha 8 B.com Marketing

COURSE Course Name Course No. Hours Department
Intro to IT 101 4 Comp Sc
Data Structure 102 4 Comp Sc
Mathematics 103 3 Math
DBMS 104 3 Comp Sc

SECTION Section
Identifier

Course No. Semester Year Instructor

A 103 I 91 Mrs. A. Panigrahi
B 101 I 91 Mr. P Kumar
C 102 II 92 Mr. A. Sinha
D 103 I 92 Mrs. P Agg.
E 101 I 92 Mr. P Kumar
F 104 I 92 Mr. S Kumar

GRADE_REPORT Student No. Section Identifier Grade
17 D 
17 E 
8 A 
8 B 
8 C 
8 F 

PREREQUISITE Course No. Prerequisite No.
104 102
104 103
102 101

Fig : Example of a database

DBMS/Unit-1

Page 4 of 22

Database System Vs File systems:

Basis DBMS Approach File System Approach

Meaning
DBMS is a collection of data. In DBMS,
the user is not required to write the
procedures.

The file system is a collection of data. In
this system, the user has to write the
procedures for managing the database.

Sharing of data Due to the centralized approach, data
sharing is easy.

Data is distributed in many files, and it
may be of different formats, so it isn't
easy to share data.

Data
Abstraction

DBMS gives an abstract view of data that
hides the details.

The file system provides the detail of the
data representation and storage of data.

Security and
Protection

DBMS provides a good protection
mechanism.

It isn't easy to protect a file under the file
system.

Recovery
Mechanism

DBMS provides a crash recovery
mechanism, i.e., DBMS protects the user
from system failure.

The file system doesn't have a crash
mechanism, i.e., if the system crashes
while entering some data, then the content
of the file will be lost.

Manipulation
Techniques

DBMS contains a wide variety of
sophisticated techniques to store and
retrieve the data.

The file system can't efficiently store and
retrieve the data.

Concurrency
Problems

DBMS takes care of Concurrent access of
data using some form of locking.

Concurrent access has many problems
like redirecting the file while deleting
some information or updating some
information.

Where to use Database approach used in large systems
which interrelate many files.

File system approach used in large
systems which interrelate many files.

Cost The database system is expensive to design. The file system approach is cheaper to
design.

Data
Redundancy &
Inconsistency

Due to the centralization of the database,
the problems of data redundancy and
inconsistency are controlled.

The files and application programs are
created by different programmers so there
exists a lot of duplication of data which
may lead to inconsistency.

Structure The database structure is complex to design. The file system approach has a simple
structure.

Data
Independence

In this system, Data Independence exists,
and it can be of two types.

 Logical Data Independence
 Physical Data Independence

In the File system approach, there exists
no Data Independence.

Integrity
Constraints Integrity Constraints are easy to apply. Integrity Constraints are difficult to

implement in file system.

Data Models

In the database approach, 3 types of data
models exist:

 Hierarchal data models
 Network data models
 Relational data models

In the file system approach, there is no
concept of data models exists.

DBMS/Unit-1

Page 5 of 22

Flexibility

Changes are often a necessity to the content
of the data stored in any system, and these
changes are more easily with a database
approach.

The flexibility of the system is less as
compared to the DBMS approach.

Examples Oracle, SQL Server etc. C, C++ , Java etc.

Persons involved in Database System
For a small personal database, one person typically defines, constructs, and manipulates the
database. However, many persons are involved in the design, use, and maintenance of a large
database with a few hundred users. In this section we identify the people whose jobs involve the
day-to-day use of a large database; we call them the "actors on the scene."

1. Database Designer: A database designer (DD) is the person who is responsible for
designing the actual database. The DD should interact with all the potential groups of users
and develop an External as well as Logical view of the database that meets the
Responsibilities:
a) Identifying the data to be stored in the database
b) Choosing appropriate structure to represent and store this data. This is done before the

database is actually implemented.
c) It is the responsibility of DD to communicate with all the prospective database users, in

order to understand their requirements.
d) The DD should come up with a design of the database, which should meet end user

requirements and should be capable enough to perform all data processing functions.
2. Database Administrator (DBA): In an organization where many persons are using the

same resources, there is a need of chief administrator to oversee and manage these
resources. In a database environment the primary resource is the database itself and
secondary resource is the DBMS and related software. Administering these resources is the
responsibility of the database administrator (DBA).
Responsibilities:

 Schema Definition:
 Storage Structure and Access-method Definition:
 Schema Modification:
 Data Access authorization granting:
 Integrity-Constraint specification:
 Data Appraisals:
 Preparing Data Manuals:

3. End Users
End users are the people whose jobs require access to the database for querying, updating,
and generating reports; the database primarily exists for their use. There are several
categories of end users:

4. System Analysts and Application Programmers (Software Engineers)
System analysts determine the requirements of end users, especially naive and parametric
end users, and develop specifications for canned transactions that meet these requirements.
Application programmers implement these specifications as programs; then they test, debug,
document, and maintain these canned transactions. Such analysts and programmers
(nowadays called software engineers) should be familiar with the full range of capabilities
provided by the DBMS to accomplish their tasks.

DBMS/Unit-1

Page 6 of 22

Application of Database System:
Databases are widely used. Here are some representative applications:

1. Banking: For customer information, accounts, and loans, and banking transactions.
2. Airlines: For reservations and schedule information. Airlines were among the first to use

database in a geographically distributed manner-Terminals situated around the world
accessed the central database system through phone lines and other data networks.

3. Universities: For student information, course registrations, and grades.
4. Credit card transaction: For purchases on credit cards and generation of monthly

statements.
5. Telecommunication: For keeping records of calls made, generating monthly bills,

maintaining balances on prepaid calling cards, and storing information about the
communication networks.

6. Finance: For storing information about holdings, sales, and purchases of financial
instrument such as stocks and bonds.

7. Sales: For customer, product, and purchase information.
8. Manufacturing: For management of supply chain and for tracking production of item in

factories, inventories of items in warehouses/stores, and orders for items.
9. Human resources: For information about employees, salaries, payroll taxes and benefits,

and for generation of paychecks.

Data Models, Schemas, and Instances
One fundamental characteristic of the database approach is that it provides some level of data
abstraction by hiding details of data storage that are not needed by most database users.
Data Model
A data model—a collection of concepts that can be used to describe the structure of a database—
provides the necessary means to achieve this abstraction. By structure of a database, we mean the
data types, relationships, and constraints that should hold on the data. Most data models also
include a set of basic operations for specifying retrievals and updates on the database.
Categories of Data Models
Many data models have been proposed, and we can categorize them according to the types of
concepts they use to describe the database structure.

1. High-level (or conceptual/ Object-based logical models) data models provide concepts
that are close to the way many users perceive data. One of the good examples is ER model
that contains concepts like entity, attribute, and relationship. An entity represents a real-
world object or concept, such as an employee or a project that is described in the database.
An attribute represents some property of interest that further describes an entity, such as
the employee’s name or salary. A relationship among two or more entities represents an
interaction among the entities; for example, a works-on relationship between an employee
and a project. Other examples are: object oriented model, semantic data model, functional
data model.

2. Representational (or implementation/ Record-based logical models) data models,
which provide concepts that may be understood by end users but that are not too far
removed from the way data is organized within the computer. Representational data models
hide some details of data storage but can be implemented on a computer system in a direct
way.
Representational or implementation data models are the models used most frequently in
traditional commercial DBMSs, and they include the widely-used relational data model,
as well as the network and hierarchical models—that have been widely used in the past.

DBMS/Unit-1

Page 7 of 22

3. Low-level (or physical) data models provide concepts that describe the details of how data
is stored in the computer. Concepts provided by low-level data models are generally meant
for computer specialists, not for typical end users.
Physical data models describe how data is stored in the computer by representing
information such as record formats, record orderings, and access paths. An access path is a
structure that makes the search for particular database records efficient.

Schemas, Instances, and Database State
The description of a database is called the database schema, which is specified during database
design and is not expected to change frequently. Most data models have certain conventions for
displaying the schemas as diagrams. A displayed schema is called a schema diagram.
Figure below shows a schema diagram for the database;

EMPLOYE
EID NAME ADDRESS SEX BDATE SALARY SURERID DNO

DEPARTMENT
DNO DNAME MGRID MGRJD

DEPT_LOCATION
DNO DLOCATION

PROJECT
PNAME PNO PLOCATION DNO

WORKS_ON
EID PNO HOURS

DEPENDENT
EID DEPENDENT_NAME SEX BDATE RELATIONSHIP

Fig.- Schema diagram of the COMPANY database

The data in the database at a particular moment in time is called a database state or snapshot. It is
also called the current set of occurrences or instances in the database. Many database states can
be constructed to correspond to a particular database schema. Every time we insert or delete a
record, or change the value of a data item in a record, we change one state of the database into
another state.
When we define a new database, we specify its database schema only to the DBMS. At this point,
the corresponding database state is the empty state with no data. We get the initial state of the
database when the database is first populated or loaded with the initial data. From then on, every
time an update operation is applied to the database, we get another database state. At any point in
time, the database has a current state.
The DBMS stores the descriptions of the schema constructs and constraints—also called the meta-
data—in the DBMS catalog.

DBMS/Unit-1

Page 8 of 22

DBMS Architecture and Data Independence
The important characteristics of the database approach, described earlier, three-schema
architecture, which was proposed to help achieve and visualize these characteristics.
The Three-Schema Architecture
The goal of the three-schema architecture is to separate the user applications and the physical
database. In this architecture, schemas can be defined at the following three levels:

1. The internal level has an internal schema, which describes the physical storage structure
of the database. The internal schema uses a physical data model and describes the complete
details of data storage and access paths for the database.

2. The conceptual level has a conceptual schema, which describes the structure of the whole
database for a community of users. The conceptual schema hides the details of physical
storage structures and concentrates on describing entities, data types, relationships, user
operations, and constraints. A high-level data model or an implementation data model can
be used at this level.

3. The external or view level includes a number of external schemas or user views. Each
external schema describes the part of the database that a particular user group is interested
in and hides the rest of the database from that user group. A high-level data model or an
implementation data model can be used at this level.

END USERS

EXTERNAL
LEVEL …

External/conceptual
mapping

CONCEPTUAL
LEVEL

Conceptual/internal
mapping

INTERNAL
LEVEL

Fig. : The three-schema architecture

The three-schema architecture is a convenient tool for the user to visualize the schema levels in a
database system. Most DBMSs do not separate the three levels completely, but support the three-

EXTERNAL
VIEW

EXTERNAL
VIEW

CONCEPTUAL SCHEMA

INTERNAL SCHEMA

STORED
DATABASE

DBMS/Unit-1

Page 9 of 22

schema architecture to some extent. Some DBMSs may include physical-level details in the
conceptual schema. In most DBMSs that support user views, external schemas are specified in the
same data model that describes the conceptual-level information. Some DBMSs allow different
data models to be used at the conceptual and external levels.
Notice that the three schemas are only descriptions of data; the only data that actually exists is at
the physical level. In a DBMS based on the three-schema architecture, each user group refers only
to its own external schema. Hence, the DBMS must transform a request specified on an external
schema into a request against the conceptual schema, and then into a request on the internal schema
for processing over the stored database. If the request is a database retrieval, the data extracted
from the stored database must be reformatted to match the user’s external view. The processes of
transforming requests and results between levels are called mappings. These mappings may be
time-consuming, so some DBMSs—especially those that are meant to support small databases—do
not support external views. Even in such systems, however, a certain amount of mapping is
necessary to transform requests between the conceptual and internal levels.

Data Independence
The three-schema architecture can be used to explain the concept of data independence, which can
be defined as the capacity to change the schema at one level of a database system without having to
change the schema at the next higher level. We can define two types of data independence:

1. Logical data independence
2. Physical data independence

Logical data independence is the capacity to change the conceptual schema without having to
change external schemas or application programs. We may change the conceptual schema to
expand the database (by adding a record type or data item), or to reduce the database (by removing
a record type or data item). In the latter case, external schemas that refer only to the remaining data
should not be affected. Only the view definition and the mappings need be changed in a DBMS that
supports logical data independence. Application programs that reference the external schema
constructs must work as before, after the conceptual schema undergoes a logical reorganization.
Changes to constraints can be applied also to the conceptual schema without affecting the external
schemas or application programs.
Physical data independence is the capacity to change the internal schema without having to
change the conceptual (or external) schemas. Changes to the internal schema may be needed
because some physical files had to be reorganized—for example, by creating additional access
structures—to improve the performance of retrieval or update. If the same data as before remains in
the database, we should not have to change the conceptual schema.
Whenever we have a multiple-level DBMS, its catalog must be expanded to include information on
how to map requests and data among the various levels. The DBMS uses additional software to
accomplish these mappings by referring to the mapping information in the catalog. Data
independence is accomplished because, when the schema is changed at some level, the schema at
the next higher level remains unchanged; only the mapping between the two levels is changed.
Hence, application programs referring to the higher-level schema need not be changed.
The three-schema architecture can make it easier to achieve true data independence, both physical
and logical. However, the two levels of mappings create an overhead during compilation or
execution of a query or program, leading to inefficiencies in the DBMS. Because of this, few
DBMSs have implemented the full three-schema architecture.

DBMS/Unit-1

Page 10 of 22

Database Languages
The DBMS must provide appropriate languages and interfaces for each category of users. In this
section we discuss the types of languages and interfaces provided by a DBMS and the user
categories targeted by each interface.

DBMS Languages
Once the design of a database is completed and a DBMS is chosen to implement the database, the
first order of the day is to specify conceptual and internal schemas for the database and any
mappings between the two.

Data Definition Language (DDL): A database schema is specified by a set of definitions
expressed by a special language called a data definition language (DDL).The result of compilation
of DDL statements is a set of tables that is stored in a special file called data dictionary, or data
directory. A data dictionary is a file that contains metadata -that is, data about data.
The basic functions of DDL is to take care of following:

 The schema for each table
 The set of values associated with each attribute
 The integrity constraints
 The set of indices to be maintained for each table
 The security and authorization information for each table
 The physical storage structure of each table on disk

Storage definition language (SDL):
In DBMSs where a clear separation is maintained between the conceptual and internal levels, the
DDL is used to specify the conceptual schema only. Another language, the storage definition
language (SDL), is used to specify the internal schema. The mappings between the two schemas
may be specified in either one of these languages.
View definition language (VDL):
For a true three-schema architecture, we would need a third language, the view definition
language (VDL), to specify user views and their mappings to the conceptual schema, but in most
DBMSs the DDL is used to define both conceptual and external schemas.
Data manipulation language (DML):
Once the database schemas are compiled and the database is populated with data, users must have
some means to manipulate the database. Typical manipulations include retrieval, insertion, deletion,
and modification of the data. The DBMS provides a data manipulation language (DML) for
these purposes. There are two main types of DMLs.

A high-level or nonprocedural DML can be used on its own to specify complex
database operations in a concise manner. Many DBMSs allow high-level DML
statements either to be entered interactively from a terminal (or monitor) or to be
embedded in a general-purpose programming language. In the latter case, DML
statements must be identified within the program so that they can be extracted by a pre-
compiler and processed by the DBMS.
A low-level or procedural DML must be embedded in a general-purpose programming
language. This type of DML typically retrieves individual records or objects from the
database and processes each separately. Hence, it needs to use programming language
constructs, such as looping, to retrieve and process each record from a set of records.
Low-level DMLs are also called record-at-a-time DMLs because of this property.
High-level DMLs, such as SQL, can specify and retrieve many records in a single DML

DBMS/Unit-1

Page 11 of 22

statement and are hence called set-at-a-time or set-oriented DMLs. A query in a high-
level DML often specifies which data to retrieve rather than how to retrieve it; hence,
such languages are also called declarative.

Data Control Language (DCL): DCL is a language, which is used to impose features and thus
prevents unauthorized access to data in the database. Security is provided by granting or revoking
privileges on a user. Privilege determines whether or not a user can execute a given command or a
command can be executed on specific groups of data.

In current DBMSs, the preceding types of languages are usually not considered distinct languages;
rather, a comprehensive integrated language is used that includes constructs for conceptual schema
definition, view definition, and data manipulation. Storage definition is typically kept separate,
since it is used for defining physical storage structures to fine-tune the performance of the database
system, and it is usually utilized by the DBA staff.
A typical example of a comprehensive database language is the SQL relational database language,
which represents a combination of DDL, VDL, and DML, as well as statements for constraint
specification and schema evolution. The SDL was a component in earlier versions of SQL but has
been removed from the language to keep it at the conceptual and external levels only.

Entity Relationship (ER) Diagram
The ER model describes data as entities, relationships, and attributes.

Consider an example called COMPANY database that keeps track of a company’s employees,
departments, and projects.

 The company is organized into departments. Each department has a unique name, a unique
number, and a particular employee who manages the department.

 We keep track of the start date when that employee began managing the department. A
department may have several locations.

 A department controls a number of projects, each of which has a unique name, a unique
number, and a single location.

 We store each employee’s name, social security number, address, salary, sex, and birth date.
 An employee is assigned to one department but may work on several projects, which are not

necessarily controlled by the same department.
 We keep track of the number of hours per week that an employee works on each project. We

also keep track of the direct supervisor of each employee.
 We want to keep track of the dependents of each employee for insurance purposes. We keep

each dependent’s first name, sex, birth date, and relationship to the employee.

Entities and Attributes
Entity: an entity, which is a "thing" in the real world with an independent existence. An entity may
be an object with a physical existence—a particular person, car, house, or employee—or it may be
an object with a conceptual existence—a company, a job, or a university course etc. It is denoted
by rectangle (see fig below)

DBMS/Unit-1

Page 12 of 22

Fig.: : An ER schema diagram for company database

Attribute: Each entity has attributes—the particular properties that describe it. For example, an
employee entity may be described by the employee’s name, age, address, salary, and job. A
particular entity will have a value for each of its attributes. An attribute is denoted by oval (see fig
above)
Types of Attribute:
Several types of attributes occur in the ER model: simple versus composite; single-valued versus
multivalued; and stored versus derived. We first define these attribute types and illustrate their use
via examples. We then introduce the concept of a null value for an attribute.

Composite Versus Simple (Atomic) Attributes
Composite attributes can be divided into smaller subparts, which represent more basic attributes
with independent meanings. For example, the Address attribute of the employee entity can be sub-
divided into StreetAddress, City, State, and Pin, with the values "234 Pkt-B," "Dwarka," "N.
Delhi," and "110075."
Attributes that are not divisible are called simple or atomic attributes. Composite attributes can
form a hierarchy; for example, StreetAddress can be subdivided into three simple attributes,
Number, Street, and Apartment Number. The value of a composite attribute is the concatenation of
the values of its constituent simple attributes.

DBMS/Unit-1

Page 13 of 22

Single-valued Versus Multivalued Attributes
Most attributes have a single value for a particular entity; such attributes are called single-valued.
For example, Age is a single-valued attribute of person.
In some cases an attribute can have a set of values for the same entity—for example, a person can
have more than one contact numbers or a Colors attribute for a car etc. Multi-valued attributes are
denoted by double oval.

Stored Versus Derived Attributes
In some cases two (or more) attribute values are related—for example, the Age and BirthDate
attributes of a person. For a particular person entity, the value of Age can be determined from the
current (today’s) date and the value of that person’s BirthDate.
The Age attribute is hence called a derived attribute and is said to be derivable from the BirthDate
attribute, which is called a stored attribute.

Null Attributes/Values
Null means no value/blank/nothing. In some cases a particular entity may not have an applicable
value for an attribute. For example, the ApartmentNumber attribute of an address applies only to
addresses that are in apartment buildings and not to other types of residences, such as single-family
homes. Null can also be used if we do not know the value of an attribute for a particular entity. for
example, if the HomePhone attribute of a person is null.

Entity Types, Entity Sets, Keys, and Value Sets

Entity Types/Entity Sets
A database usually contains groups of entities that are similar. For example, a company employing
hundreds of employees may want to store similar information concerning each of the employees.
These employee entities share the same attributes, but each entity has its own value(s) for each
attribute.
An entity type defines a collection (or set) of entities that have the same attributes. Each entity type
in the database is described by its name and attributes. The collection of all entities of a particular
entity type in the database at any point in time is called an entity set; the entity set is usually
referred to using the same name as the entity type. For example, EMPLOYEE refers to both a type
of entity as well as the current set of all employee entities in the database.
An entity type is represented in ER diagrams as a rectangular box enclosing the entity type name.
Attribute names are enclosed in ovals and are attached to their entity type by straight lines.
Composite attributes are attached to their component attributes by straight lines. Multivalued
attributes are displayed in double ovals.

Key Attributes of an Entity Type
An important constraint on the entities of an entity type is the key or uniqueness constraint on
attributes. An entity type usually has an attribute whose values are distinct for each individual
entity in the collection. Such an attribute is called a key attribute, and its values can be used to
identify each entity uniquely.
For example, the EMPLOYEE entity type, a typical key attribute is Employee ID (EID).
Sometimes, several attributes together form a key, meaning that the combination of the attribute
values must be distinct for each entity. If a set of attributes possesses this property, we can define a

DBMS/Unit-1

Page 14 of 22

composite attribute that becomes a key attribute of the entity type. In ER diagrammatic notation,
each key attribute has its name underlined inside the oval.
An entity type may also have no key, in which case it is called a weak entity type. An entity set
that has a key attribute is termed as a Strong entity set

Value Sets (Domains) of Attributes
Each simple attribute of an entity type is associated with a value set (or domain of values), which
specifies the set of values that may be assigned to that attribute for each individual entity.
We can specify the value set for the Name attribute as being the set of strings of alphabetic
characters separated by blank characters and so on. Value sets are not displayed in ER diagrams.

Initial Conceptual Design of the COMPANY Database
We can now define the entity types for the COMPANY database, based on the requirements
described. According to the requirements, we can identify four entity types—one corresponding to
each of the four items in the specification:

 An entity type DEPARTMENT with attributes Name, Number, Locations, Manager, and
ManagerStartDate. Locations is the only multivalued attribute. We can specify that both
Name and Number are (separate) key attributes, because each was specified to be unique.

 An entity type PROJECT with attributes Name, Number, Location, and
ControllingDepartment. Both Name and Number are (separate) key attributes.

 An entity type EMPLOYEE with attributes Name, SSN (for social security number), Sex,
Address, Salary, BirthDate, Department, and Supervisor. Both Name and Address may be
composite attributes; however, this was not specified in the requirements. We must go back
to the users to see if any of them will refer to the individual components of Name—
FirstName, MiddleInitial, LastName—or of Address.

 An entity type DEPENDENT with attributes Employee, DependentName, Sex, BirthDate,
and Relationship (to the employee).

So far, we have not represented the fact that an employee can work on several projects, nor have
we represented the number of hours per week an employee works on each project. This
characteristic can be represented by a multivalued composite attribute of EMPLOYEE called
WorksOn with simple components (Project, Hours).

Relationships, Relationship Types, Roles, and Structural Constraints
There are several implicit relationships among the various entity types. In fact, whenever an
attribute of one entity type refers to another entity type, some relationship exists. For example,

 The attribute Manager of DEPARTMENT refers to an employee who manages the
department;

 The attribute Controlling Department of PROJECT refers to the department that controls
the project;

 The attribute Supervisor of EMPLOYEE refers to another employee (the one who
supervises this employee);

 The attribute Department of EMPLOYEE refers to the department for which the employee
works; and so on.

In the ER model, these references should not be represented as attributes but as relationships. The
COMPANY database schema will be refined to represent relationships explicitly. In the initial
design of entity types, relationships are typically captured in the form of attributes. As the design is
refined, these attributes get converted into relationships between entity types.

DBMS/Unit-1

Page 15 of 22

Relationship Types/Sets and Instances
A relationship type R among n entity types , , . . ., defines a set of associations—or a
relationship set—among entities from these types. As for entity types, a relationship type
/relationship set are customarily referred to by the same name R.
For example, consider a relationship type WORKS_FOR between the two entity types
EMPLOYEE and DEPARTMENT, which associates each employee with the department the
employee works for. Each relationship instance in the relationship set WORKS_FOR associates
one employee entity and one department entity.
For example, employees e1, e3, and e6work for department d1; e2 and e4work for d2; and e5 and e7
work for d3.

In ER diagrams, relationship types are displayed as diamond-shaped boxes, which are connected by
straight lines to the rectangular boxes representing the participating entity types. The relationship
name is displayed in the diamond-shaped box.

Relationship Degree, Role Names, and Recursive Relationships

Degree of a Relationship Type
The degree of a relationship type is the number of participating entity types. Hence, the
WORKS_FOR relationship is of degree two. A relationship type of degree two is called binary, and
one of degree three is called ternary. Relationships can generally be of any degree, but the ones
most common are binary relationships. Higher-degree relationships are generally more complex
than binary relationships, and we shall characterize them later.

Role Names and Recursive Relationships
Each entity type that participates in a relationship type plays a particular role in the relationship.
The role name signifies the role that a participating entity from the entity type plays in each
relationship instance, and helps to explain what the relationship means.
For example,
 in the WORKS_FOR relationship type, EMPLOYEE plays the role of employee or worker and

DEPARTMENT plays the role of department or employer. Role names are not technically
necessary in relationship types where all the participating entity types are distinct, since each
entity type name can be used as the role name.

 However, in some cases the same entity type participates more than once in a relationship type
in different roles. In such cases the role name becomes essential for distinguishing the meaning
of each participation. Such relationship types are called recursive relationships. The
SUPERVISION relationship type relates an employee to a supervisor, where both employee
and supervisor entities are members of the same EMPLOYEE entity type. Hence, the
EMPLOYEE entity type participates twice in SUPERVISION: once in the role of supervisor
(or boss), and once in the role of supervisee (or subordinate). Each relationship instance in
SUPERVISION associates two employee entities ej and ek, one of which plays the role of
supervisor and the other the role of supervisee. In ERD Fig the lines marked "1" represent the
supervisor role, and those marked "2" represent the supervisee role; hence, e1 supervises e2 and
e3; e4 supervises e6 and e7; and e5 supervises e1 and e4.

Constraints on Relationship Types
Relationship types usually have certain constraints that limit the possible combinations of entities
that may participate in the corresponding relationship set. For example, if the company has a rule

DBMS/Unit-1

Page 16 of 22

that each employee must work for exactly one department, then we would like to describe this
constraint in the schema. We can distinguish two main types of relationship constraints:

 Cardinality ratio (or Mapping cardinality)
 Participation constraint (or existence dependency).

Cardinality Ratios:
The cardinality ratio for a binary relationship specifies the number of relationship instances that an
entity can participate in. The possible cardinality ratios for binary relationship types are:

1:1(One to One),
1:N (One to Many)/N: 1(Many to One),
M: N (Many to Many).

For a binary relationship set r between entity set A and B the mapping cardinality must be one of
the following.
One to One: - An entity in A is associated with at most one entity in B and an entity in B is
associated with at most one entity in A.

A B

An example of a 1:1 binary relationship is MANAGES, which relates a department entity to the
employee who manages that department. This represents the constraints that an employee can
manage only one department and that a department has only one manager.
One to Many: - An entity in A is associated with any number of entities in B. An entity in B can
be associated with at most one entity in A.

A B

a1

a2

a3

a4

b1

b2

b3

b4

a1

a2

a3
b4

b3

b2

b1

DBMS/Unit-1

Page 17 of 22

For example, in the WORKS_FOR binary relationship type, DEPARTMENT: EMPLOYEE is of
cardinality ratio 1:N, meaning that each department can be related to numerous employees, but an
employee can be related to (work for) only one department.
Many to One:- An entity in A can be associated with at most one entity in B. an entity in B can be
associated with any number of entities in A.

Many to Many: - An entity in A can be associated with any number of entities in B and an entity
in B is associated with any number of entities in A.

A B

The relationship type WORKS_ON is of cardinality ratio M: N, because the rule is that an
employee can work on several projects and a project can have several employees.

Cardinality ratios for binary relationships are displayed on ER diagrams by displaying 1, M, and N
on the diamonds as shown in ERD

Participation Constraints /Existence Dependencies
The participation constraint specifies whether the existence of an entity depends on its being
related to another entity via the relationship type.
There are two types of participation constraints—total and partial—which we illustrate by example.
If a company policy states that every employee must work for a department, then an employee
entity can exist only if it participates in a WORKS_FOR relationship instance. Thus, the
participation of EMPLOYEE in WORKS_FOR is called total participation, meaning that every
entity in "the total set" of employee entities must be related to a department entity via
WORKS_FOR. Total participation is also called existence dependency.
But we do not expect every employee to manage a department, so the participation of EMPLOYEE
in the MANAGES relationship type is partial, meaning that some or "part of the set of" employee
entities are related to a department entity via MANAGES, but not necessarily all. We will refer to
the cardinality ratio and participation constraints, taken together, as the structural constraints of a
relationship type.
In ER diagrams, total participation is displayed as a double line connecting the participating entity
type to the relationship, whereas partial participation is represented by a single line in ER diagram.

a1

a2

a3

a4

b1

b2

b3

b4

DBMS/Unit-1

Page 18 of 22

Attributes of Relationship Types
Relationship types can also have attributes, similar to those of entity types. For example, to record
the number of hours per week that an employee works on a particular project, we can include an
attribute Hours for the WORKS_ON relationship type. Another example is to include the date on
which a manager started managing a department via an attribute StartDate for the MANAGES
relationship type.
Notice that attributes of 1:1 or 1:N relationship types can be migrated to one of the participating
entity types. For example, the StartDate attribute for the MANAGES relationship can be an
attribute of either EMPLOYEE or DEPARTMENT—although conceptually it belongs to
MANAGES. This is because MANAGES is a 1:1 relationship, so every department or employee
entity participates in at most one relationship instance. Hence, the value of the StartDate attribute
can be determined separately, either by the participating department entity or by the participating
employee (manager) entity.
For a 1:N relationship type, a relationship attribute can be migrated only to the entity type at the N-
side of the relationship. For example, in Figure ERD, if the WORKS_FOR relationship also has an
attribute StartDate that indicates when an employee started working for a department, this attribute
can be included as an attribute of EMPLOYEE. This is because each employee entity participates
in at most one relationship instance in WORKS_FOR.
In both 1:1 and 1:N relationship types, the decision as to where a relationship attribute should be
placed—as a relationship type attribute or as an attribute of a participating entity type—is
determined subjectively by the schema designer.
For M:N relationship types, some attributes may be determined by the combination of participating
entities in a relationship instance, not by any single entity. Such attributes must be specified as
relationship attributes. An example is the Hours attribute of the M:N relationship WORKS_ON;
the number of hours an employee works on a project is determined by an employee-project
combination and not separately by either entity.

Weak Entity Types:
Entity types that do not have key attributes of their own are called weak entity types. In contrast,
regular entity types that do have a key attribute are sometimes called strong entity types. Entities
belonging to a weak entity type are identified by being related to specific entities from another
entity type in combination with some of their attribute values. We call this other entity type the
identifying or owner entity type, and we call the relationship type that relates a weak entity type
to its owner the identifying relationship of the weak entity type. A weak entity type always has a
total participation constraint (existence dependency) with respect to its identifying relationship,
because a weak entity cannot be identified without an owner entity. However, not every existence
dependency results in a weak entity type.
Consider the entity type DEPENDENT, related to EMPLOYEE, which is used to keep track of the
dependents of each employee via a 1:N relationship (Figure ERD). The attributes of DEPENDENT
are Name (the first name of the dependent), BirthDate, Sex, and Relationship (to the employee).
Two dependents of two distinct employees may, by chance, have the same values for Name,
BirthDate, Sex, and Relationship, but they are still distinct entities. They are identified as distinct
entities only after determining the particular employee entity to which each dependent is related.
Each employee entity is said to own the dependent entities that are related to it.
A weak entity type normally has a partial key, which is the set of attributes that can uniquely
identify weak entities that are related to the same owner entity. In our example, if we assume that
no two dependents of the same employee ever have the same first name, the attribute Name of

DBMS/Unit-1

Page 19 of 22

DEPENDENT is the partial key. In the worst case, a composite attribute of all the weak entity’s
attributes will be the partial key.
In ER diagrams, both a weak entity type and its identifying relationship are distinguished by
surrounding their boxes and diamonds with double lines (see Figure ERD). The partial key attribute
is underlined with a dashed or dotted line.
In general, any number of levels of weak entity types can be defined; an owner entity type may
itself be a weak entity type. In addition, a weak entity type may have more than one identifying
entity type and an identifying relationship type of degree higher than two, as we shall illustrate in

Refining the ER Design for the COMPANY Database
We can now refine the database design by changing the attributes that represent relationships into
relationship types. The cardinality ratio and participation constraint of each relationship type are
determined from the requirements listed. In our example, we specify the following relationship
types:

1. MANAGES, a 1:1 relationship type between EMPLOYEE and DEPARTMENT.
EMPLOYEE participation is partial. DEPARTMENT participation is not clear from the
requirements. We question the users, who say that a department must have a manager at all
times, which implies total participation. The attribute StartDate is assigned to this
relationship type.

2. WORKS_FOR, a 1:N relationship type between DEPARTMENT and EMPLOYEE. Both
participations are total.

3. CONTROLS, a 1:N relationship type between DEPARTMENT and PROJECT. The
participation of PROJECT is total, whereas that of DEPARTMENT is determined to be
partial, after consultation with the users.

4. SUPERVISION, a 1:N relationship type between EMPLOYEE (in the supervisor role) and
EMPLOYEE (in the supervisee role). Both participations are determined to be partial, after
the users indicate that not every employee is a supervisor and not every employee has a
supervisor.

5. WORKS_ON, determined to be an M:N relationship type with attribute Hours, after the
users indicate that a project can have several employees working on it. Both participations
are determined to be total.

6. DEPENDENTS_OF, a 1:N relationship type between EMPLOYEE and DEPENDENT,
which is also the identifying relationship for the weak entity type DEPENDENT. The
participation of EMPLOYEE is partial, whereas that of DEPENDENT is total.

After specifying the above six relationship types, we remove from the entity types all attributes that
have been refined into relationships. These include Manager and ManagerStartDate from
DEPARTMENT; ControllingDepartment from PROJECT; Department, Supervisor, and WorksOn
from EMPLOYEE; and Employee from DEPENDENT. It is important to have the least possible
redundancy when we design the conceptual schema of a database. If some redundancy is desired at
the storage level or at the user view level, it can be introduced later.

DBMS/Unit-1

Page 20 of 22

Summary of Notation for ER Diagrams

1 N

(min, max)
R

Enhanced-ER (EER) Model Concepts

Includes all modeling concepts of basic ER. Additional concepts: subclasses/superclasses,
specialization/generalization, categories, attribute inheritance
The resulting model is called the enhanced-ER or Extended ER (E2R or EER) model. It is used to
model applications more completely and accurately if needed. It includes some object-oriented
concepts, such as inheritance .
Subclasses and Superclasses.
An entity type may have additional meaningful subgroupings of its entities
Example: EMPLOYEE may be further grouped into SECRETARY, ENGINEER, MANAGER,
TECHNICIAN, SALARIED_EMPLOYEE, HOURLY_EMPLOYEE,…

Meaning

ENTITY TYPE

WEAK ENTITY TYPE

RELATIONSHIP TYPE

IDENTIFYING RELATIONSHIP TYPE

ATTRIBUTE

KEY ATTRIBUTE

MULTIVALUED ATTRIBUTE

COMPOSITE ATTRIBUTE

DERIVED ATTRIBUTE

TOTAL PARTICIPATION OF E2 IN R

CARDINALITY RATIO 1:N FOR E1:E2 IN R

STRUCTURAL CONSTRAINT (min, max)
ON PARTICIPATION OF E IN R

Symbol

E R E

E E2R

E

DBMS/Unit-1

Page 21 of 22

Each of these groupings is a subset of EMPLOYEE entities. Each is called a subclass of
EMPLOYEE. EMPLOYEE is the superclass for each of these subclasses. These are called
superclass/subclass relationships.
Example: EMPLOYEE/SECRETARY, EMPLOYEE/TECHNICIAN
These are also called IS-A relationships (SECRETARY IS-A EMPLOYEE, TECHNICIAN IS-A
EMPLOYEE, …).
Note: An entity that is member of a subclass represents the same real-world entity as some member
of the superclass . The Subclass member is the same entity in a distinct specific role. An entity
cannot exist in the database merely by being a member of a subclass; it must also be a member of
the superclass. A member of the superclass can be optionally included as a member of any number
of its subclasses
Example: A salaried employee who is also an engineer belongs to the two subclasses ENGINEER
and SALARIED_EMPLOYEE
It is not necessary that every entity in a superclass be a member of some subclass
Attribute Inheritance in Superclass / Subclass Relationships
An entity that is member of a subclass inherits all attributes of the entity as a member of the
superclass. It also inherits all relationships.
Specialization
Is the process of defining a set of subclasses of a superclass, The set of subclasses is based upon
some distinguishing characteristics of the entities in the superclass.
Example: {SECRETARY, ENGINEER, TECHNICIAN} is a specialization of EMPLOYEE based
upon job type. May have several specializations of the same superclass.
Example: Another specialization of EMPLOYEE based in method of pay is
{SALARIED_EMPLOYEE, HOURLY_EMPLOYEE}.
Superclass/subclass relationships and specialization can be diagrammatically represented in EER
diagrams. Attributes of a subclass are called specific attributes. For example, Typing Speed of
SECRETARY. The subclass can participate in specific relationship types. For example,
BELONGS_TO of HOURLY_EMPLOYEE
Example of a Specialization

DBMS/Unit-1

Page 22 of 22

Generalization

It is the reverse of the specialization process. Several classes with common features are generalized
into a superclass; original classes become its subclasses.
Example: CAR, TRUCK generalized into VEHICLE; both CAR, TRUCK become subclasses of
the superclass VEHICLE.
We can view {CAR, TRUCK} as a specialization of VEHICLE. Alternatively, we can view
VEHICLE as a generalization of CAR and TRUCK
Generalization and Specialization
Diagrammatic notation sometimes used to distinguish between generalization and specialization.
Arrow pointing to the generalized superclass represents a generalization. Arrows pointing to the
specialized subclasses represent a specialization.
We do not use this notation because it is often subjective as to which process is more appropriate
for a particular situation. We advocate not drawing any arrows in these situations.
Data Modeling with Specialization and Generalization
A superclass or subclass represents a set of entities. Shown in rectangles in EER diagrams (as are
entity types) . Sometimes, all entity sets are simply called classes, whether they are entity types,
superclasses, or subclasses

References:
1. Fundamentals of Database Systems: Ramez Elmasri, Shamkant B. Navathe, Pearson.
2. Database System Concepts: Avi Silberschatz · Henry F. Korth · S. Sudarshan, McGraw Hill

	Introduction:-
	DBMS
	Instructor
	A
	B
	PREREQUISITE

	Responsibilities:
	Data Models, Schemas, and Instances

	Data Model
	Categories of Data Models
	EID
	DNO
	DNO
	DLOCATION

	PNO
	EID
	PNO

	DEPENDENT_NAME
	Composite Versus Simple (Atomic) Attributes
	Stored Versus Derived Attributes
	Null Attributes/Values
	Entity Types, Entity Sets, Keys, and Value Sets
	Entity Types/Entity Sets
	Key Attributes of an Entity Type
	Value Sets (Domains) of Attributes
	Initial Conceptual Design of the COMPANY Database
	Relationship Degree, Role Names, and Recursive Rel
	Role Names and Recursive Relationships
	Constraints on Relationship Types
	Cardinality Ratios:
	Participation Constraints /Existence Dependencies
	Attributes of Relationship Types
	Refining the ER Design for the COMPANY Database

