
DBMS/02-A

Page 1 of 14

Relational Model Concepts

Relational Model Concepts:
The relational model was designed by E.F.Codd in 1970. It is based on a simple and uniform data
structure- the relation- and has solid theoretical foundation. The relational model represents the
database as a collection of relations. A Relation is a mathematical concept based on the ideas of sets.
The strength of the relational approach to data management comes from the formal foundation
provided by the theory of relations.
Informal Definitions:
RELATION: A table of values. A relation may be thought of as a set of rows. A relation may
alternately be thought of as a set of columns. Each row of the relation may be given an identifier.
Each column typically is called by its column name or column header or attribute name.
Formal Definitions:
RELATION: A Relation may be defined in multiple ways.
The Schema of a Relation: R (A1, A2...An) Relation R is defined over attributes A1, A2...An.
For Example -

EMPLOYEE (EID, NAME, ADDRESS, SEX, SALARY, DNO)
Here, EMPLOYEE is a relation defined over the six attributes EID, NAME, ADDRESS, SEX,
SALARY, and DNO each of which has a domain or a set of valid values. For example, the domain
of EID is six digit numbers.
Tuple: Each row in the table EMPLOYEE may be called as a tuple. A tuple is an ordered set of
values. Each value is derived from an appropriate domain in the table and would consist of six
values.
<101, "Amit", "110, Dwarka”, “M”, 10000,1> is a tuple belonging to the EMPLOYEE relation.

Attributes
Relation Name

EMPLOYEE EID NAME ADDRESS SEX B_DATE SALARY DNO
101 Amit 110,Dwarka M 12-5-1980 10,000 1
102 Rohit 12,Janakpuri M 23-8-1978 12,000 1
103 Pooja 45,Delhi F 04-4-1982 13,000 2
104 Rhea 76,Kolkata F 19-8-1983 11,000 3
105 Vikram 34,Palam M 15-8-1985 14,000 3

Fig.- The attributes and tuples of a relation EMPLOYEE

A relation may be regarded as a set of tuples (rows). Columns in a table are called attributes of the
relation.
The relation is formed over the Cartesian product of the sets; each set has values from a domain; that
domain is used in a specific role, which is conveyed by the attribute name.
For example, attribute ‘Name’ is defined over the domain of strings of 25 characters. The role these
strings play in the EMPLOYEE relation is that of the name of employee.
Formally, Given R (A1, A2, ... An)

r(R) subset-of dom (A1) X dom (A2) XX dom(An)

DBMS/02-A

Page 2 of 14

Definition Summary
Informal Terms Formal Terms
Table Relation
Column Attribute
Row Tuple
Values in a column Domain
Table Definition Schema of Relation

Characteristics of Relations:
1. Ordering of tuples in a relation r(R): A relation is defined as a set of tuples.

Mathematically, elements of a set have no order among them. Hence, the tuples are not
considered to be ordered, even though they appear to be in the tabular form. However, in a
file, records are physically stored on disk so there is an order among the records. This
ordering indicates 1st, 2nd, ith, and last record in the file. Tuple ordering is not part of a relation
definition, because a relation attempts to represent facts at a logical level.

2. Ordering of attributes in a relation schema R (and of values within each tuple): We will
consider the attributes in R (A1, A2... An) and the values in t=<v1, v2... vn> to be ordered.
(However, a more general alternative definition of relation does not require this ordering).

3. Values in a tuple: All values are considered atomic (indivisible). A special null value is
used to represent values that are unknown or inapplicable to certain tuples. Multivalued
attributes are represented by separate relations and composite attributes are represented only
by their simple component attributes.

4. Interpretation of a relation: The relational schema can be interpreted as a declaration. For
example, the schema of the EMPLOYEE relation asserts that an employee entity has an Eid,
Name, address, Sex, B_Date, Salary, DNO. Each tuple in the relation can then be interpreted
as a fact or a particular instance of the assertion.

Relational Model Constraints
Constraints are conditions that must hold on all valid relation instances. There are four main types of
constraints:

 Domain constraints
 Key constraints
 Entity integrity constraints
 Referential integrity constraints

Domain Constraints:
It specifies that the value of each attribute A must be an atomic value and from the domain

dom (A) for that attributes. The data types associated with domain include standard data types for
integers and real numbers, characters, date and so many data types.
Key Constraints:
Super key of R: A set of attributes SK of R such that no two tuples in any valid relation instance r(R)
will have the same value for SK. That is, for any distinct tuples t1 and t2 in r(R),

t1 [SK]  t2 [SK].
Every relation has at least one super key.
Candidate key: An attribute having unique/distinct values can be considered as candidate key.
Primary key: If a relation has several candidate keys, one is chosen arbitrarily to be the primary key.
Primary key values are used to identify tuples in the relation. The primary key attributes are
underlined.

DBMS/02-A

Page 3 of 14

Entity Integrity Constraints:
Entity Integrity: The primary key attributes PK of each relation cannot have null values in

any tuple. This is because primary key values are used to identify the individual tuples.
t[PK] <> null for any tuple t in r(R)

Referential Integrity Constraints
The previous constraints (key and entity) are specified on a single relation). The referential integrity
constraint is specified between two relations: the referencing relation and the referenced relation. It is
used to maintain the consistency among tuples of the two relations.
Foreign key: A set of attributes FK in relational schema R1 is a foreign key of R1 if it satisfies the
following two rules:

1. The attributes in FK have the same domain as the primary key attribute PK of another
relation schema R2.

2. The value of FK in R1 should either be from PK of R2 or null.
Tuples in the referencing relation R1 have attributes FK (called foreign key attributes) that reference
the primary key attributes PK of the referenced relation R2. A tuple t1 in R1 is said to reference a
tuple t2 in R2 if t1 [FK] = t2 [PK].
A referential integrity constraint can be displayed in a relational database schema as a directed arc
from R1.FK to R2.PK

Fig.- Primary Key & Referential integrity constraints on the COMPANY relational database schema

DBMS/02-A

Page 4 of 14

ER -to -Relational Mapping Algorithm
STEP 1: For each regular entity type E in the ER schema, Create a relation R that includes all the
simple attributes of E. Include only the simple attributes and only the simple components attribute of
a composite attribute of E. Choose one of the key attributes of E as primary key for R.
Step 2: For each weak entity type W in the ER schema with owner entity type E, create a relation R,
and include all simple attributes or simple components of composite attributes of W as attributes of R,
In addition include as foreign key attributes of R the primary key attributes of the relation that
correspond to the owner entity type; this takes care of identifying relationship type of W. The
primary key of R is the combination of the primary key of the owner and the partial key of the weak
entity type W, if any.
STEP 3: For each binary 1:1 relationship type R in the ER schema, identify the relations S and T that
correspond to the entity types participating in R. Choose one of the relations - S and include as
foreign key in S the primary key of T. It is better to choose an entity type with total participation in R
in the role of S. Include all the simple attributes of the 1:1 relationship type R as attributes of S.
STEP 4: For each regular binary 1:N relationship type R; identify the relation S that represents the
participating entity type at the N- side of the relationship type. Include as foreign key in S the
primary key of the relation T that represents the other entity type participating in R.
STEP 5: For each binary M: N relationship type R, create a new relation S to represent R. Include as
foreign key attributes in S the primary keys of the relation that represent the participating entity types;
their combination will form the primary key of S. Also include any simple attributes of the M: N
relationship type as attributes of S.
STEP 6: For each multivalued attribute A, create a new relation R, This relation R will include an
attribute corresponding to A, plus the primary key attribute K- as a foreign key in R - of the relation
that represents the entity type of relationship type that has A as an attribute. The primary key of R is
the combination of A and K. If the multivalued attribute is composite, include only its simple
components.
STEP 7: For each n-ary relationship type R, n>2, create a new relation S to represent R. Includes as
a foreign key attributes in S the primary key of the relations that represent the participating entity
types. The primary key of S is usually a combination of all the foreign keys that reference the
relations representing the participating entity type.

Update Operations And Constraint Violations on Relations
There are three basic update operations on relations:

Insert a tuple.
Delete a tuple.
Modify a tuple.

Insert Operation:
Insert is used to insert a new tuple or tuples in a relation. Insert can violate any of the four types of
constraint.
-Domain constraint can be violated if an attribute value is not from the corresponding domain.
-Key constraint can be violated if a key value in the new tuple already exists in another tuple in the
relation.
-Entity integrity can be violated if the primary key of the new tuple is null.
-Referential integrity can be violated if the value of foreign key refers to a tuple that does not exit in
the referenced relation.
If an insertion violates one or more constraints, two options are available.
First, reject the insertion. Second, correct the reason for rejecting the relation.
Delete operation:
Delete is used to delete tuples. Delete operation can violate only referential integrity constraint.

DBMS/02-A

Page 5 of 14

Referential integrity constraint can be violated if the tuple being deleted is referenced by the foreign
key from other tuples in the database.
If a delete operation causes a violation, three options are available:
First, reject the deletion. Second, delete the tuple that reference the tuple that is being deleted. Third,
modify the referencing attribute values that cause the violation; each such value is either set to null
or changed to reference another valid tuple.
Modify operation:
Modify operation is used to change the values of one or more attributes in a tuple(s). It is necessary
to specify a condition on the attributes of a relation to select the tuple(s) to be modified.
Modifying an attribute that is neither a primary key nor a foreign key usually causes no problem.
Modifying a primary key value is similar to deleting one tuple and inserting another in its place.
Hence, the issue discussed earlier under both ‘Insert’ and ‘Delete’ come into play.

Fig.- A relational database instance (state) of the COMPANY schema.

DEPT_LOCATION DNO DLOCATION
1 A-Block
4 B-Block
5 C-Block
5 D-Block
5 A-Block

DEPARTMENT DNO DNAME MGRID MGRJD
1 Research 102 11-5-1998
4 Administration 104 10-3-1997
5 Head office 108 01-1-2000

EMPLOYEE EID NAME ADDRESS SEX B_DATE SALARY DNO
101 Amit 110,Dwarka M 12-5-1980 30,000 5
102 Rohit 12,Janakpuri M 23-8-1978 40,000 5
103 Pooja 45,Delhi F 04-4-1982 25,000 4
104 Rhea 76,Kolkata F 19-8-1983 43,000 4
105 Vikram 34,Palam M 15-8-1985 38,000 5
106 Charu 12, Banaras F 21-6-1981 25,000 5
107 Karan 9,Mumbai M 10-5-1985 25,000 4
108 Vishal 34,Channai M 14-9-1979 55,000 1

WORKS_ON EID PNO HOURS
101 10 11
101 30 08
102 10 23
103 20 16
104 40 19
108 10 20
105 50 17
106 40 13
107 20 21

PROJECT PNO PNAME PLOCATION DNUM
10 Computerization B-Block 4
20 Reorganization A-Block 1
30 Marketing B-Block 4
40 Accounts C-Block 5
50 HRD D-Block 5

DEPENDENT EID DEPENDENT_NAME SEX BDATE RELATIONSHIP
101 Monu M 10-5-94 Son
101 Sarita F 15-8-79 Wife
102 Pooja F 23-7-80 Wife
102 Neetu F 09-4-99 Daughter
103 Chintu M 14-9-00 Son
105 Neha F 17-2-82 Wife
107 Annu F 11-1-83 Wife

DBMS/02-A

Page 6 of 14

The Relational Algebra
Relational algebra is a collection of operations that are used to manipulate entire relations.

These operation are used:
-To select tuples and attributes from relations.
-To specify retrieval requests (queries).

The result of each operation is a new relation, which can be further manipulated. The relational
algebra operation are divided into two group:

-Relational database operations: SELECT, PROJECT, And JOIN.
-Set theory operations: UNION, INTERSECTION, DIFFERENCE, and CARTESIAN
PRODUCT.

SELECT Operation:
The SELECT operation is used to select a subset of the tuples in a relation that satisfy a selection
condition.
SELECT operation (denoted by σ):

-Selects the tuples (rows) from a relation R that satisfy a certain selection condition c
-The condition c is an arbitrary Boolean expression on the attributes of R
-Resulting relation has the same attributes as R
-Resulting relation includes each tuple in r(R) whose attribute values satisfy the condition c.
-The SELECT operator is unary; it is applied on one relation.

Generally, the SELECT operation is denoted as:
σ <selection condition>(<relation name>)

Examples:
σ DNO=5 (EMPLOYEE)

σ SALARY>30000 (EMPLOYEE)

σ SEX=F(EMPLOYEE)

PROJECT Operation:
The PROJECT operation selects certain columns/attributes from the table/relation.
PROJECT Operation (denoted by π):

-Keeps only certain attributes (columns) from a relation R specified in an attribute list L
-Resulting relation has only those attributes of R specified in L.
-If the L includes only non-key attributes of R, the PROJECT operation eliminates duplicate
tuples in the resulting relation so that it remains a mathematical set (no duplicate elements).

DEPT5_EMPS EID NAME ADDRESS SEX B_DATE SALARY DNO
101 Amit 110,Dwarka M 12-5-1980 30,000 5
102 Rohit 12,Janakpuri M 23-8-1978 40,000 5
105 Vikram 34,Palam M 15-8-1985 38,000 5
106 Charu 12, Banaras F 21-6-1981 25,000 5

EMPLOYEE EID NAME ADDRESS SEX B_DATE SALARY DNO
102 Rohit 12,Janakpuri M 23-8-1978 40,000 5
104 Rhea 76,Kolkata F 19-8-1983 43,000 4
105 Vikram 34,Palam M 15-8-1985 38,000 5

FEMALE_EMPS EID NAME ADDRESS SEX B_DATE SALARY DNO
103 Pooja 45,Delhi F 04-4-1982 25,000 4
104 Rhea 76,Kolkata F 19-8-1983 43,000 4
106 Charu 12, Banaras F 21-6-1981 25,000 5

DBMS/02-A

Page 7 of 14

-If L includes a key of the relation, the resulting relation has the same number of tuples as the
original one.
-The number of tuples in resulting relation is always less than or equal to the number of
tuples in the original relation.
- The PROJECT operator is unary; it is applied on one relation.

The general form of the project operation is:
π<attribute list>(<relation name>)

Example:
π NAME, SALARY (EMPLOYEE) π SEX, SALARY (EMPLOYEE)

If several male employees have salary 30000, only a single tuple <M, 30000> is kept in the resulting
relation. Duplicate tuples are eliminated by the π operation.
Sequences of operations:

Several operations can be combined to form a relational algebra expression (query).
Example: Retrieve the names and salaries of employees who work in department 5:

π NAME, SALARY (σ DNO=5(EMPLOYEE))

Alternatively, we specify explicit intermediate relations for each step:
DEPT5_EMPS σ DNO=5(EMPLOYEE)
RESULT π NAME, SALARY (DEPT5_EMPS)

Note: Attributes can also optionally be renamed in the resulting relation:

EMPLOYEE NAME SALARY
Amit 30,000
Rohit 40,000
Pooja 25,000
Rhea 43,000
Vikram 38,000
Charu 25,000
Karan 25,000
Vishal 55,000

EMPLOYEE SEX SALARY
M 30,000
M 40,000
F 25,000
F 43,000
M 38,000
M 25,000
M 55,000

EMPLOYEE NAME SALARY
Amit 30,000
Rohit 40,000
Vikram 38,000
Charu 25,000

DEPT5_EMPS EID NAME ADDRESS SEX B_DATE SALARY DNO
101 Amit 110,Dwarka M 12-5-1980 30,000 5
102 Rohit 12,Janakpuri M 23-8-1978 40,000 5
105 Vikram 34,Palam M 15-8-1985 38,000 5
106 Charu 12, Banaras F 21-6-1981 25,000 5

RESULT NAME SALARY
Amit 30,000
Rohit 40,000
Vikram 38,000
Charu 25,000

DBMS/02-A

Page 8 of 14

Set Operations:
These operations are binary; they can be applied to two sets/relations/tables. When these operations
are performed on relational database, we must make sure that the operation can be applied to two
relations so that result is also a valid relation.
Union Compatibility: Two relations R (A1, A2, …, An) and S(B1,B2,…,Bn) are said to be union
compatible if they have the same degree n, and dom (Ai) = dom (Bi) for 1  i  n. This means that
two relations have the same number of attributes and that each pair of corresponding attributes has
the same domain.
Note: Set operations are performed on R & S only if they are union compatible.

We can define these operations on two union compatible relations R and S as
UNION (R  S): The result of this operation is a relation that includes all tuple that are either in R
or in S or in both R and S. Duplicate tuples are eliminated.
INTERSECTION (R  S): The result of this operation is a relation that includes all tuples that are
in both R and S.
DIFFERENCE (R  S): The result of this operation is a relation that includes all tuples that are in R
but not in S.
Let us consider two union compatible relations STUDENT & INSTRUCTOR as shown in fig. The
result of three set operations described above is shown in fig. below.

STUDENT NAME
Amit
Rohit
Pooja
Rhea
Vikram
Charu
Karan
Vishal

INSTUCTOR NAME
Ashish
Sikha
Amit
Juhi
Rohit

S  I NAME
Amit
Rohit
Pooja
Rhea
Vikram
Charu
Karan
Vishal
Ashish
Sikha
Juhi

S  I NAME
Amit
Rohit

S  I NAME
Pooja
Rhea
Vikram
Charu
Karan
Vishal

I  S NAME
Ashish
Sikha
Juhi

DBMS/02-A

Page 9 of 14

Note: 1) Both UNION and INTERSECTION are commutative operations.
i.e. R  S = S  R and R  S = S  R

2) The DIFFERENCE operation is not commutative in general.
i.e. R  S  S  R

CARTESIAN PRODUCT (R  S): This is also a binary set operation, but the relation on which it
is applied do not have to be union compatible. This operation is used to combine tuples from two
relations so that related tuples can be identified. In general, the result of R (A1, A2,…, An) 
S(B1,B2,…,Bm) is a relation Q with n + m attributes Q(A1,A2,…,An,B1,B2,…,Bm). Hence, if R has nR
tuples and S has nS tuples, then R  S will have nR*nS tuples.
Example: Suppose we want to retrieve for each female employee, a list of the names of her
dependents.

FEMALE_EMPS  SEX= ‘F’ (EMPLOYEE)

EMPNAMES  EID, NAME (FEMALE_EMPS)

EMP_DEPENDENTS EMPNAMES  DEPENDENTS

EMP_DEPENDENTS EID NAME EID DEPENDENT_NAME SEX …
103 Pooja 101 Monu M …
103 Pooja 101 Sarita F …
103 Pooja 102 Pooja F …
103 Pooja 102 Neetu F …
103 Pooja 103 Chintu M …
103 Pooja 105 Neha F …
103 Pooja 107 Annu F …
104 Rhea 101 Monu M …
… … … … … …

ACTUAL_DEPENDENTS  EID=EID (EMP_DEPENDENTS)

ACTUAL_DEPENDENTS EID NAME EID DEPENDENT_NAME …
103 Pooja 103 Chintu …

RESULT  NAME, DEPENDENT_NAME (ACTUAL_DEPENDENTS)

RESULT NAME DEPENDENT_NAME
Pooja Chintu

Fig.- The CARTESIAN PRODUCT operation
Note: 1) The CARTESIAN PRODUCT is rarely used. We will prefer JOIN operation.

FEMALE_EMPS EID NAME ADDRESS SEX B_DATE SALARY DNO
103 Pooja 45,Delhi F 04-4-1982 25,000 4
104 Rhea 76,Kolkata F 19-8-1983 43,000 4
106 Charu 12, Banaras F 21-6-1981 25,000 5

EMPNAMES EID NAME
103 Pooja
104 Rhea
106 Charu

DBMS/02-A

Page 10 of 14

2) CARTESIAN PRODUCT is a meaningless operation on its own. It can combine related
tuples from two relations if followed by the appropriate SELECT operation.

JOIN Operations ():
The JOIN operation is used to combine related tuples from two relations into single tuple. The
general form of a JOIN operation on two relation R (A1, A2,…,An) and S(B1,B2,…,Bm) is

R  <join condition> S
The result of the JOIN is a relation Q with n + m attribute Q (A1, A2,…,An, B1, B2,…, Bm). Q has
one tuple for each combination of tuples--one from R and one from S –whenever the combination
satisfies the join condition.
This is the main difference between CARTESIAN PRODUCT and JOIN: in JOIN, only
combinations of tuples satisfying the join condition appear in the result, whereas in the CARTESIAN
PRODUCT all combinations of tuples are included in the result.
Example: we want to retrieve the name of the manager of each department.

DEPT_MGR DEPARTMENT  MGRID=EID EMPLOYEE
RESULT  NAME (DEPT_MGR)

DEPT_MGR DNO DNAME MGRID … EID NAME …
1 Research 102 102 Rohit
4 Administration 104 104 Rhea
5 Head Office 108 108 Vishal

Fig.-the JOIN operation
A join condition is of the form:

<Condition> AND <condition> AND … AND <condition>
Where each condition is of the form AiBj , Ai is an attribute of R, Bj is an attribute of S. Ai and Bj
have the same domain and  is one of the comparison operator {=, <, , >, , }.
THETA JOIN: A join operation with a general join condition discussed above is called theta join. It
is Similar to a CARTESIAN PRODUCT followed by a SELECT. EQUIJOIN: It is the most
common join operation having join condition with equality comparisons (=) only. The join condition
includes one or more equality comparisons involving attributes from R and S. Join condition is of
the form:

(Ai=Bj) AND ... AND (Ah=Bk); 1  i, h  m, 1  j, k  n
In the above EQUIJOIN operation:

Ai... Ah are called the join attributes of R
Bj... Bk are called the join attributes of S

Note: In the result of EQUIJOIN we always have one or more pair of attributes that have identical
values (superfluous) in every tuple. In above fig. Value of EID and MGRID are identical.
NATURAL JOIN (*): In an EQUIJOIN Q R  c S, the join attributes of S appear redundantly in
the result relation Q. In a NATURAL JOIN, the redundant join attributes of S are eliminated from Q.
The equality condition is implied and need not be specified. A general notation for NATURAL JOIN
is:

Q R *(join attributes of R),(join attributes of S) S
Example: Retrieve each Employee’s name and the name of the Department he/she works for:
Q EMPLOYEE *(DNO),(DNUMBER)DEPARTMENT
RESULT NAME, DNAME(Q)

If the join attributes have the same names in both relations, they need not be specified and we can
write Q R * S.

DBMS/02-A

Page 11 of 14

Complete Set of Relational Algebra Operations:
All the operations discussed so far can be described as a sequence of only the operations SELECT,
PROJECT, UNION, SET DIFFERENCE, and CARTESIAN PRODUCT.
Hence, the set {, , , , } is called a complete set of relational algebra operations. Any of the
other relational algebra operations can be expressed as a sequence of operation from this set.
Example: 1) The INTERSECTION operation can be expressed by using UNION and DIFFERENCE
as follows:

R  S = (R  S)  ((R  S)  (S  R))
2) A JOIN operation can be specified as a CARTESIAN PRODUCT followed by a SELECT
operation:

R  < condition> S =  <condition> (R  S)
3) A NATURAL JOIN can be specified as a CARTESIAN PRODUCT followed by SELECT and
PROJECT operations.
DIVISION Operation:
The DIVISION operation is useful for a special kind of query that sometimes occurs in database
applications. For example, ‘retrieve the name of employees who works on all the projects that ‘Amit’
works on.’

AMIT  NAME=‘Amit’ (EMPLOYEE)
AMIT_PNOS  PNO (WORKS_ON * AMIT)
EID_PNOS  EID, PNO (WORKS_ON)
EID EID_PNOS  AMIT_PNOS
RESULT  NAME (EID * EMPLOYEE)

Generally, DIVISION operation is applied to relations R (Z)  S (X), where X  Z
Example: Let R and S be two relations

Fig.-5.11 The division operation. T R  S

R A B
a1 b1
a2 b1
a3 b1
a4 b1
a1 b2
a3 b2
a2 b3
a3 b3
a4 b3
a1 b4
a2 b4
a3 b4

T B
b1
b4

S A
a1
a2
a3

DBMS/02-A

Page 12 of 14

Additional Relational Operations
AGGREGATE FUNCTIONS
Functions such as SUM, COUNT, AVERAGE, MIN, and MAX are often applied to sets of values or
sets of tuples in database applications.
In general, a FUNCTION operation is expressed as:

<grouping attributes> f <function list> (R)
The grouping attributes are optional
Example: 1) Retrieve the average salary of all employees (no grouping needed):

R (AVGSAL) f AVERAGE SALARY (EMPLOYEE)
Example: 2) For each department, retrieve the department number, the number of employees, and the
average salary (in the department):
R (DNO, NUMEMPS, AVGSAL) DNO f COUNT EID, AVERAGE SALARY (EMPLOYEE)
DNO is called the grouping attribute in the above example.
Recursive Closure Operation:
This operation is applied to a recursive relationship between tuples of the same type, such as
relationship between an employee and supervisor. This relationship is described by the foreign key
SID of the EMPLOYEE relation as given below:

Fig.- Recursive relationship
It relates each employee tuple (in the role of supervisee) to another employee tuple (in the role of
supervisor).
Recursive closure operation means to retrieve the all supervisees of an employee e at all level—that
is,

All employee e1 directly supervised by e,
All employee e2 directly supervised by e1,
All employee e3 directly supervised by e2, and so on.

Example: To retrieve the EIDs of all employees e1 directly supervised –at one level-by the employee
e whose name is ‘Vishal’.

VISHAL_EID  EID ( NAME=‘Vishal’ (EMPLOYEE)
SUPERVISION (EID1, EID2)  EID, SID (EMPLOYEE)
RESULT1 (EID)  EID1 (SUPERVISION  EID2=EID VISHAL_EID)

To retrieve the EIDs of all employees e2 directly supervised –at one level-by the employee e1 whose
name is ‘Vishal’.

RESULT2 (EID)  EID1 (SUPERVISION  EID2=EIDRESULT1)
To get both sets of employees supervised at level one and two by ‘Vishal’, we can apply the UNION
operation to the two results.

RESULT3 (RESULT1  RESULT2)

EMPLOYEE EID NAME ADDRESS SEX B_DATE SALARY SID DNO
101 Amit 110,Dwarka M 12-5-1980 30,000 102 5
102 Rohit 12,Janakpuri M 23-8-1978 40,000 108 5
103 Pooja 45,Delhi F 04-4-1982 25,000 104 4
104 Rhea 76,Kolkata F 19-8-1983 43,000 108 4
105 Vikram 34,Palam M 15-8-1985 38,000 102 5
106 Charu 12, Banaras F 21-6-1981 25,000 102 5
107 Karan 9,Mumbai M 10-5-1985 25,000 104 4
108 Vishal 34,Channai M 14-9-1979 55,000 null 1

DBMS/02-A

Page 13 of 14

Fig.- Two-level recursion.
Although it is possible to retrieve employees at each level and then take their UNION but we cannot.
We have to specify the level explicitly. Specifying a query such as “retrieve the supervisees of
‘Vishal’ at all levels” is not logical. If we do not know the maximum number of level, we would
need a looping mechanism.
OUTER JOIN

In a regular EQUIJOIN or NATURAL JOIN operation, tuples in R or S that do not have
matching tuples in the other relation do not appear in the result. Tuples without a ‘related tuple’ are
eliminated from the result. Tuples with null in the join attributes are also eliminated.
But Some queries require all tuples in R (or S or both) to appear in the result.

A set of operation OUTER JOIN can be used when we want to keep all tuples in R or S or
both in the result—whether or not they have matching tuples in the other relation. When no matching
tuples are found, nulls are placed for the missing attributes.
LEFT OUTER JOIN(R  S): The LEFT OUTER JOIN operation keeps every tuple in the first or
left relation R in R  S. If no matching tuples are found in S, then attributes of S are filled with null
values.
Example: Retrieve a list of all employee names and also the name of the departments they manage.

TEMP (EMPLOYEE  EID=MGRID DEPARTMENT)
RESULT  NAME, DNAME (TEMP)

Fig.-: The LEFT OUTER JOIN operation

SUPERVISION EID1 EID2
101 102
102 108
103 104
104 108
105 102
106 102
107 104
108 null

RESULT1 EID
102
104

RESULT EID
101
103
105
106
107
102
104

RESULT2 EID
101
103
105
106
107

RESULT NAME DNAME
Amit null
Rohit Research
Pooja null
Rhea Administration
Vikram null
Charu null
Karan null
Vishal Head Office

DBMS/02-A

Page 14 of 14

RIGHT OUTER JOIN(R  S): It keeps every tuples in the second or right relation S in the result
of R  S. If no matching tuples are found in R, then attributes of R are filled with null values.
FULL OUTER JOIN(R  S): It keeps all tuples in both left and right relation. When no matching
tuples are founds, null values are filled up.
OUTER UNION:
The OUTER UNION operation is used to take the union of tuples from two relations that are not
union compatible. This operation will take the UNION of tuples in two relations that are partially
compatible (only some of their attributes are union compatible).
The attributes that are not union compatible from either relation are kept in the result, and tuples that
have no values for these attributes are filled with null values.

References:
1. Fundamentals of Database Systems: Ramez Elmasri, Shamkant B. Navathe, Pearson.
2. Database System Concepts: Avi Silberschatz · Henry F. Korth · S. Sudarshan, McGraw Hill

	Formal Definitions:
	Tuple: Each row in the table EMPLOYEE may be calle
	EMPLOYEE
	EID

	Definition Summary
	Informal TermsFormal Terms
	Characteristics of Relations:
	Relational Model Constraints

	Entity Integrity Constraints:
	Referential Integrity Constraints
	ER -to -Relational Mapping Algorithm
	DEPT_LOCATION
	DNO
	DLOCATION
	1
	A-Block
	4
	B-Block
	5
	C-Block
	5
	D-Block
	5
	A-Block
	DEPARTMENT
	DNO
	DNAME
	MGRID
	MGRJD
	1
	Research
	102
	11-5-1998
	4
	Administration
	104
	10-3-1997
	5
	Head office
	108
	01-1-2000
	EMPLOYEE
	EID

	WORKS_ON
	EID
	PNO
	HOURS
	101
	10
	11
	101
	30
	08
	102
	10
	23
	103
	20
	16
	104
	40
	19
	108
	10
	20
	105
	50
	17
	106
	40
	13
	107
	20
	21
	PROJECT
	PNO
	PNAME
	PLOCATION
	DNUM
	10
	Computerization
	B-Block
	4
	20
	Reorganization
	A-Block
	1
	30
	Marketing
	B-Block
	4
	40
	Accounts
	C-Block
	5
	50
	HRD
	D-Block
	5
	DEPENDENT
	EID
	DEPENDENT_NAME
	SEX
	BDATE
	RELATIONSHIP
	101
	Monu
	M
	10-5-94
	Son
	101
	Sarita
	F
	15-8-79
	Wife
	102
	Pooja
	F
	23-7-80
	Wife
	102
	Neetu
	F
	09-4-99
	Daughter
	103
	Chintu
	M
	14-9-00
	Son
	105
	Neha
	F
	17-2-82
	Wife
	107
	Annu
	F
	11-1-83
	Wife
	The Relational Algebra
	DEPT5_EMPS
	EID

	EMPLOYEE
	EID

	FEMALE_EMPS
	EID

	EMPLOYEE
	EMPLOYEE
	EMPLOYEE
	DEPT5_EMPS
	EID

	RESULT
	Set Operations:

	S (I
	NAME
	S (I
	I (S
	CARTESIAN PRODUCT (R (S): This is also a binary s
	FEMALE_EMPS
	EID

	EMPNAMES
	EID
	EMP_DEPENDENTS
	EID

	Monu
	M
	Sarita
	F
	Pooja
	F
	Neetu
	F
	Chintu
	M
	Neha
	F
	Annu
	F
	ACTUAL_DEPENDENTS
	RESULT
	Fig.- The CARTESIAN PRODUCT operation
	Additional Relational Operations

	EMPLOYEE
	EID

	Fig.- Recursive relationship
	OUTER JOIN

